References
- Algazin, S.D. (2011), "Vibrations of a free-edge variable-thickness plate of arbitrary shape in plan", J. Appl. Mech. Tech. Phys., 52(1), 126-131. https://doi.org/10.1134/S0021894411010160
- Altekin, M. (2010), "Bending of orthotropic super-elliptical plates on intermediate point supports", Ocean Eng., 37(11-12), 1048-1060. https://doi.org/10.1016/j.oceaneng.2010.03.015
- Altekin, M. and Altay, G. (2008), "Static analysis of point-supported super-elliptical plates", Arch. Appl Mech., 78(4), 259-266. https://doi.org/10.1007/s00419-007-0154-9
- Alwar, R.S. and Nath, Y. (1976), "Application of Chebyshev polynomials to the nonlinear analysis of circular plates", Int. J. Mech. Sci., 18(11-12), 589-595. https://doi.org/10.1016/0020-7403(76)90086-2
- Artan, R. and Lehmann, L. (2009), "Initial values method for symmetric bending of micro/nano annular circular plates based on nonlocal plate theory", J. Comput. Theor. Nanosci., 6(5), 1125-1130. https://doi.org/10.1166/jctn.2009.1153
- Asemi, K., Ashrafi, H., Salehi, M. and Shariyat, M. (2013), "Three-dimensional static and dynamic analysis of functionally graded elliptical plates, employing graded finite elements", Acta Mechanica, doi: 10.1007/s00707-013-0835-0.
- Bayer, I., Guven, U. and Altay, G. (2002), "A parametric study on vibrating clamped elliptical plates with variable thickness", J. Sound Vib., 254(1), 179-188. https://doi.org/10.1006/jsvi.2001.4099
- Brebbia, C.A. (1984), The Boundary Element Method for Engineers, Pentech Press, London, UK.
- Ceribasi, S. (2013), "Static and dynamic analysis of thin uniformly loaded super elliptical FGM plates", Mech. Adv. Mater. Struct., 19(5), 325-335.
- Chen, C.C., Lim, C.W., Kitipornchai, S. and Liew, K.M. (1999), "Vibration of symmetrically laminated thick super elliptical plates", J. Sound Vib., 220(4), 659-682. https://doi.org/10.1006/jsvi.1998.1957
- Chen, Y.Z. (2013), "Innovative iteration technique for large deflection problem of annular plate", Steel Compos. Struct., 14(6), 605-620. https://doi.org/10.12989/scs.2013.14.6.605
- Civalek, O. (2005), "Large deflection static and dynamic analysis of thin circular plates resting on twoparameter elastic foundation", Int. J. Comput. Method., 2(2), 271-291. https://doi.org/10.1142/S0219876205000478
- Dai, H.L., Yan, X. and Yang, L. (2013), "Nonlinear dynamic analysis for fgm circular plates", J. Mech., 29(2), 287-295. https://doi.org/10.1017/jmech.2012.139
- Gorji, M. and Akileh, A.R. (1990), "Elastic-plastic bending of annular plates with large deflection", Comput. Struct., 34(4), 537-548. https://doi.org/10.1016/0045-7949(90)90232-Q
- Hasheminejad, S.M., Keshvari, M.M. and Ashory, M.R. (2014), "Dynamic stability of super elliptical plates resting on elastic foundations under periodic in-plane loads", J. Eng. Mech., 140(1), 172-181. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000630
- Jazi, S.R. and Farhatnia, F. (2012), "Buckling analysis of functionally graded super elliptical plate using pb-2 Ritz method", Adv. Mater. Res., 383-390, 5387-5391.
- Kutlu, A. and Omurtag, M.H. (2012), "Large deflection bending analysis of elliptic plates on orthotropic elastic foundation with mixed finite element method", Int. J. Mech. Sci., 65(1), 64-74. https://doi.org/10.1016/j.ijmecsci.2012.09.004
- Kwon, Y.W. and Bang, H. (2000), The Finite Element Method using MATLAB, CRC Press, Boca Raton.
- Liew, K.M. and Feng, Z.C. (2001), "Three-dimensional free vibration analysis of perforated super elliptical plates via the p-Ritz method", Int. J. Mech. Sci., 43(11), 2613-2630. https://doi.org/10.1016/S0020-7403(01)00051-0
- Liew, K.M., Kitipornchai, S. and Lim, C.W. (1998), "Free vibration analysis of thick superelliptical plates", J. Eng. Mech., 124(2), 137-145. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:2(137)
- Lim, C.W., Kitipornchai, S. and Liew, K.M. (1998), "A free vibration analysis of doubly connected thick super elliptical laminated composite plates", Compos. Sci. Tech., 58(3-4), 435-445. https://doi.org/10.1016/S0266-3538(97)00167-X
- Malekzadeh, P. (2007), "A DQ nonlinear bending analysis of skew composite thin plates", Struct. Eng. Mech., 25(2), 161-180. https://doi.org/10.12989/sem.2007.25.2.161
- Maron, M.J. and Lopez, R J. (1991), Numerical Analysis: A Practical Approach, Wadsworth Publishing Company, Belmont.
- Mathews, J.H. (1992), Numerical Methods for Mathematics, Science, and Engineering, Prentice Hall, Englewood Cliffs, USA.
- Monterrubio, L.E. and Ilanko, S. (2012), "Sets of admissable functions for the Rayleigh-Ritz method", Proceedings of the Eleventh International Conference on Computational Structures Technology, Dubrovnik, Croatia.
- Mukhopadhyay, B. and Bera, R.K. (1994), "Nonlinear analysis of thin homogeneous orthotropic elastic plates under large deflection and thermal loading", Comput. Math. Appl., 28(9), 81-88.
- Orakdogen, E., Kucukarslan, S., Sofiyev, A. and Omurtag, M.H. (2010), "Finite element analysis of functionally graded plates for coupling effect of extension and bending", Meccanica, 45(1), 63-72. https://doi.org/10.1007/s11012-009-9225-z
- Ozkul, T.A. and Ture, U. (2004), "The transition from thin plates to moderately thick plates by using finite element analysis and the shear locking problem", Thin Wall. Struct., 42(10), 1405-1430. https://doi.org/10.1016/j.tws.2004.05.003
- Pedersen, N.L. (2004), "Optimization of holes in plates for control of eigenfrequencies", Struct. Multidisc. Opt., 28(1), 1-10.
- Rajaiah, K. and Rao, A.K. (1978), "Collocation solution for point-supported square plates", J. Appl. Mech., 45(2), 424-425. https://doi.org/10.1115/1.3424313
- Shanmugam, N.E., Huang, R., Yu, C.H. and Lee, S.L. (1988), "Uniformly loaded rhombic orthotropic plates supported at corners", Comput. Struct., 30(5), 1037-1045. https://doi.org/10.1016/0045-7949(88)90148-4
- Silverman, I.K. and Mays, J.R. (1972), "A collocation solution of the nonlinear equations for axisymmetric bending of shallow spherical shells", J. Franklin Ins., 294(3), 181-192. https://doi.org/10.1016/0016-0032(72)90013-0
- Szilard, R. (1974), Theory and Analysis of Plates, Prentice Hall, Englewood Cliffs, USA.
- Szilard, R. (2004), Theories and Applications of Plate Analysis, John Wiley & Sons Inc., Hooboken, USA.
- Tang, H.W., Yang, Y.T. and Chen, C.K. (2012), "Application of new double side approach method to the solution of super-elliptical plate problems", Acta Mechanica, 223(4), 745-753. https://doi.org/10.1007/s00707-011-0592-x
- Timoshenko, S.P. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-Hill International Editions, Singapore.
- Wang, C.M., Wang, L. and Liew, K.M. (1994), "Vibration and buckling of super elliptical plates", J. Sound Vib., 171(3), 301-314. https://doi.org/10.1006/jsvi.1994.1122
- Wang, C.M., Wang, Y.C. and Reddy, J.N. (2002), "Problems and remedy for the Ritz method in determining stress resultants of corner supported rectangular plates", Comput. Struct., 80(2), 145-154. https://doi.org/10.1016/S0045-7949(01)00168-7
- Williams, R. and Brinson, H.F. (1974), "Circular plate on multipoint supports", J. Franklin Ins., 297(6), 429-447. https://doi.org/10.1016/0016-0032(74)90120-3
- Wu, L. and Liu, J. (2005), "Free vibration analysis of arbitrary shaped thick plates by differential cubature method", Int. J. Mech. Sci., 47(1), 63-81. https://doi.org/10.1016/j.ijmecsci.2004.12.003
- Zhang, D. (2013), "Non-linear bending analysis of super-elliptical thin plates", Int. J. Nonlin. Mech., 55, 180-185. https://doi.org/10.1016/j.ijnonlinmec.2013.06.006
- Zhang, Y.X. and Kim, K.S. (2006), "Geometrically nonlinear analysis of laminated composite plates by two new displacement-based quadrilateral plate elements", Compos. Struct., 72(3), 301-310. https://doi.org/10.1016/j.compstruct.2005.01.001
- Zhou, D., Lo, S.H., Cheung, Y.K. and Au, F.T.K. (2004), "3-D vibration analysis of generalized superelliptical plates using Chebyshev-Ritz method", Int. J. Solid. Struct., 41(16-17), 4697-4712. https://doi.org/10.1016/j.ijsolstr.2004.02.045
Cited by
- Static deflections of symmetrically laminated quasi-isotropic super-elliptical thin plates vol.141, 2017, https://doi.org/10.1016/j.oceaneng.2017.06.032
- Elastic Buckling and Post-Buckling of Von Mises Planar Trusses vol.769, pp.1662-7482, 2015, https://doi.org/10.4028/www.scientific.net/AMM.769.49
- Free transverse vibration of shear deformable super-elliptical plates vol.24, pp.4, 2017, https://doi.org/10.12989/was.2017.24.4.307
- Dynamic response of thin plates on time-varying elastic point supports vol.62, pp.4, 2017, https://doi.org/10.12989/sem.2017.62.4.431
- Concerning the tensor-based flexural formulation: Theory vol.70, pp.4, 2014, https://doi.org/10.12989/sem.2019.70.4.445
- Concerning the tensor-based flexural formulation: Applications vol.77, pp.6, 2021, https://doi.org/10.12989/sem.2021.77.6.765