DOI QR코드

DOI QR Code

Large deflection analysis of point supported super-elliptical plates

  • Altekin, Murat (Department of Civil Engineering, Yildiz Technical University)
  • Received : 2013.08.23
  • Accepted : 2014.05.18
  • Published : 2014.07.25

Abstract

Nonlinear bending of super-elliptical plates of uniform thickness under uniform transverse pressure was investigated by the Ritz method. The material was assumed to be homogeneous and isotropic. The contribution of the boundary conditions at the point supports was introduced by the Lagrange multipliers. The solution was obtained by the Newton-Raphson method. The influence of the location of the point supports on the central deflection was highlighted by sensitivity analysis. An approximate relationship between the central deflection and the super-elliptical power was obtained using the method of least squares. The critical points where the maximum deflection may develop, and the influence of nonlinearity were highlighted. The nonlinearity was found to be sensitive to the aspect ratio. The accuracy of the algorithm was validated by comparing the central deflection with the solutions of elliptical and rectangular plates.

Keywords

References

  1. Algazin, S.D. (2011), "Vibrations of a free-edge variable-thickness plate of arbitrary shape in plan", J. Appl. Mech. Tech. Phys., 52(1), 126-131. https://doi.org/10.1134/S0021894411010160
  2. Altekin, M. (2010), "Bending of orthotropic super-elliptical plates on intermediate point supports", Ocean Eng., 37(11-12), 1048-1060. https://doi.org/10.1016/j.oceaneng.2010.03.015
  3. Altekin, M. and Altay, G. (2008), "Static analysis of point-supported super-elliptical plates", Arch. Appl Mech., 78(4), 259-266. https://doi.org/10.1007/s00419-007-0154-9
  4. Alwar, R.S. and Nath, Y. (1976), "Application of Chebyshev polynomials to the nonlinear analysis of circular plates", Int. J. Mech. Sci., 18(11-12), 589-595. https://doi.org/10.1016/0020-7403(76)90086-2
  5. Artan, R. and Lehmann, L. (2009), "Initial values method for symmetric bending of micro/nano annular circular plates based on nonlocal plate theory", J. Comput. Theor. Nanosci., 6(5), 1125-1130. https://doi.org/10.1166/jctn.2009.1153
  6. Asemi, K., Ashrafi, H., Salehi, M. and Shariyat, M. (2013), "Three-dimensional static and dynamic analysis of functionally graded elliptical plates, employing graded finite elements", Acta Mechanica, doi: 10.1007/s00707-013-0835-0.
  7. Bayer, I., Guven, U. and Altay, G. (2002), "A parametric study on vibrating clamped elliptical plates with variable thickness", J. Sound Vib., 254(1), 179-188. https://doi.org/10.1006/jsvi.2001.4099
  8. Brebbia, C.A. (1984), The Boundary Element Method for Engineers, Pentech Press, London, UK.
  9. Ceribasi, S. (2013), "Static and dynamic analysis of thin uniformly loaded super elliptical FGM plates", Mech. Adv. Mater. Struct., 19(5), 325-335.
  10. Chen, C.C., Lim, C.W., Kitipornchai, S. and Liew, K.M. (1999), "Vibration of symmetrically laminated thick super elliptical plates", J. Sound Vib., 220(4), 659-682. https://doi.org/10.1006/jsvi.1998.1957
  11. Chen, Y.Z. (2013), "Innovative iteration technique for large deflection problem of annular plate", Steel Compos. Struct., 14(6), 605-620. https://doi.org/10.12989/scs.2013.14.6.605
  12. Civalek, O. (2005), "Large deflection static and dynamic analysis of thin circular plates resting on twoparameter elastic foundation", Int. J. Comput. Method., 2(2), 271-291. https://doi.org/10.1142/S0219876205000478
  13. Dai, H.L., Yan, X. and Yang, L. (2013), "Nonlinear dynamic analysis for fgm circular plates", J. Mech., 29(2), 287-295. https://doi.org/10.1017/jmech.2012.139
  14. Gorji, M. and Akileh, A.R. (1990), "Elastic-plastic bending of annular plates with large deflection", Comput. Struct., 34(4), 537-548. https://doi.org/10.1016/0045-7949(90)90232-Q
  15. Hasheminejad, S.M., Keshvari, M.M. and Ashory, M.R. (2014), "Dynamic stability of super elliptical plates resting on elastic foundations under periodic in-plane loads", J. Eng. Mech., 140(1), 172-181. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000630
  16. Jazi, S.R. and Farhatnia, F. (2012), "Buckling analysis of functionally graded super elliptical plate using pb-2 Ritz method", Adv. Mater. Res., 383-390, 5387-5391.
  17. Kutlu, A. and Omurtag, M.H. (2012), "Large deflection bending analysis of elliptic plates on orthotropic elastic foundation with mixed finite element method", Int. J. Mech. Sci., 65(1), 64-74. https://doi.org/10.1016/j.ijmecsci.2012.09.004
  18. Kwon, Y.W. and Bang, H. (2000), The Finite Element Method using MATLAB, CRC Press, Boca Raton.
  19. Liew, K.M. and Feng, Z.C. (2001), "Three-dimensional free vibration analysis of perforated super elliptical plates via the p-Ritz method", Int. J. Mech. Sci., 43(11), 2613-2630. https://doi.org/10.1016/S0020-7403(01)00051-0
  20. Liew, K.M., Kitipornchai, S. and Lim, C.W. (1998), "Free vibration analysis of thick superelliptical plates", J. Eng. Mech., 124(2), 137-145. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:2(137)
  21. Lim, C.W., Kitipornchai, S. and Liew, K.M. (1998), "A free vibration analysis of doubly connected thick super elliptical laminated composite plates", Compos. Sci. Tech., 58(3-4), 435-445. https://doi.org/10.1016/S0266-3538(97)00167-X
  22. Malekzadeh, P. (2007), "A DQ nonlinear bending analysis of skew composite thin plates", Struct. Eng. Mech., 25(2), 161-180. https://doi.org/10.12989/sem.2007.25.2.161
  23. Maron, M.J. and Lopez, R J. (1991), Numerical Analysis: A Practical Approach, Wadsworth Publishing Company, Belmont.
  24. Mathews, J.H. (1992), Numerical Methods for Mathematics, Science, and Engineering, Prentice Hall, Englewood Cliffs, USA.
  25. Monterrubio, L.E. and Ilanko, S. (2012), "Sets of admissable functions for the Rayleigh-Ritz method", Proceedings of the Eleventh International Conference on Computational Structures Technology, Dubrovnik, Croatia.
  26. Mukhopadhyay, B. and Bera, R.K. (1994), "Nonlinear analysis of thin homogeneous orthotropic elastic plates under large deflection and thermal loading", Comput. Math. Appl., 28(9), 81-88.
  27. Orakdogen, E., Kucukarslan, S., Sofiyev, A. and Omurtag, M.H. (2010), "Finite element analysis of functionally graded plates for coupling effect of extension and bending", Meccanica, 45(1), 63-72. https://doi.org/10.1007/s11012-009-9225-z
  28. Ozkul, T.A. and Ture, U. (2004), "The transition from thin plates to moderately thick plates by using finite element analysis and the shear locking problem", Thin Wall. Struct., 42(10), 1405-1430. https://doi.org/10.1016/j.tws.2004.05.003
  29. Pedersen, N.L. (2004), "Optimization of holes in plates for control of eigenfrequencies", Struct. Multidisc. Opt., 28(1), 1-10.
  30. Rajaiah, K. and Rao, A.K. (1978), "Collocation solution for point-supported square plates", J. Appl. Mech., 45(2), 424-425. https://doi.org/10.1115/1.3424313
  31. Shanmugam, N.E., Huang, R., Yu, C.H. and Lee, S.L. (1988), "Uniformly loaded rhombic orthotropic plates supported at corners", Comput. Struct., 30(5), 1037-1045. https://doi.org/10.1016/0045-7949(88)90148-4
  32. Silverman, I.K. and Mays, J.R. (1972), "A collocation solution of the nonlinear equations for axisymmetric bending of shallow spherical shells", J. Franklin Ins., 294(3), 181-192. https://doi.org/10.1016/0016-0032(72)90013-0
  33. Szilard, R. (1974), Theory and Analysis of Plates, Prentice Hall, Englewood Cliffs, USA.
  34. Szilard, R. (2004), Theories and Applications of Plate Analysis, John Wiley & Sons Inc., Hooboken, USA.
  35. Tang, H.W., Yang, Y.T. and Chen, C.K. (2012), "Application of new double side approach method to the solution of super-elliptical plate problems", Acta Mechanica, 223(4), 745-753. https://doi.org/10.1007/s00707-011-0592-x
  36. Timoshenko, S.P. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-Hill International Editions, Singapore.
  37. Wang, C.M., Wang, L. and Liew, K.M. (1994), "Vibration and buckling of super elliptical plates", J. Sound Vib., 171(3), 301-314. https://doi.org/10.1006/jsvi.1994.1122
  38. Wang, C.M., Wang, Y.C. and Reddy, J.N. (2002), "Problems and remedy for the Ritz method in determining stress resultants of corner supported rectangular plates", Comput. Struct., 80(2), 145-154. https://doi.org/10.1016/S0045-7949(01)00168-7
  39. Williams, R. and Brinson, H.F. (1974), "Circular plate on multipoint supports", J. Franklin Ins., 297(6), 429-447. https://doi.org/10.1016/0016-0032(74)90120-3
  40. Wu, L. and Liu, J. (2005), "Free vibration analysis of arbitrary shaped thick plates by differential cubature method", Int. J. Mech. Sci., 47(1), 63-81. https://doi.org/10.1016/j.ijmecsci.2004.12.003
  41. Zhang, D. (2013), "Non-linear bending analysis of super-elliptical thin plates", Int. J. Nonlin. Mech., 55, 180-185. https://doi.org/10.1016/j.ijnonlinmec.2013.06.006
  42. Zhang, Y.X. and Kim, K.S. (2006), "Geometrically nonlinear analysis of laminated composite plates by two new displacement-based quadrilateral plate elements", Compos. Struct., 72(3), 301-310. https://doi.org/10.1016/j.compstruct.2005.01.001
  43. Zhou, D., Lo, S.H., Cheung, Y.K. and Au, F.T.K. (2004), "3-D vibration analysis of generalized superelliptical plates using Chebyshev-Ritz method", Int. J. Solid. Struct., 41(16-17), 4697-4712. https://doi.org/10.1016/j.ijsolstr.2004.02.045

Cited by

  1. Static deflections of symmetrically laminated quasi-isotropic super-elliptical thin plates vol.141, 2017, https://doi.org/10.1016/j.oceaneng.2017.06.032
  2. Elastic Buckling and Post-Buckling of Von Mises Planar Trusses vol.769, pp.1662-7482, 2015, https://doi.org/10.4028/www.scientific.net/AMM.769.49
  3. Free transverse vibration of shear deformable super-elliptical plates vol.24, pp.4, 2017, https://doi.org/10.12989/was.2017.24.4.307
  4. Dynamic response of thin plates on time-varying elastic point supports vol.62, pp.4, 2017, https://doi.org/10.12989/sem.2017.62.4.431
  5. Concerning the tensor-based flexural formulation: Theory vol.70, pp.4, 2014, https://doi.org/10.12989/sem.2019.70.4.445
  6. Concerning the tensor-based flexural formulation: Applications vol.77, pp.6, 2021, https://doi.org/10.12989/sem.2021.77.6.765