참고문헌
- Bellin, M., Marchetto, M.C., Gage, F.H., and Mummery, C.L. (2012). Induced pluripotent stem cells: the new patient? Nat. Rev. Mol. Cell. Biol. 13, 713-726.
- Blow, N. (2008). Stem cells: in search of common ground. Nature 451, 855-858. https://doi.org/10.1038/451855a
- Breslauer, D.N., Lee, P.J., and Lee LP. (2006). Microfluidics-based systems biology. Mol. Biosyst. 2, 97-112. https://doi.org/10.1039/b515632g
- Cohen, M.S., Bas Orth, C., Kim, H.J., Jeon, N.L., and Jaffrey, S,R. (2011). Neurotrophin-mediated dendrite-to-nucleus signaling revealed by microfluidic compartmentalization of dendrites. Proc. Natl. Acad. Sci. USA 108, 11246-11251. https://doi.org/10.1073/pnas.1012401108
- Hamon, M., and Hong, J.W. (2013). New tools and new biology: recent miniaturized systems for molecular and cellular biology. Mol. Cells 36, 485-506. https://doi.org/10.1007/s10059-013-0333-1
- Jeon, I., Lee, N., Li, J.Y., Park, I.H., Park, S., Moon, J., Shim, S.H., Choi, C., Chang, D.J., Kwon, J., et al. (2012). Neural properties, in vivo effects and pathology of a Huntington's disease patient-derived induced pluripotent stem cells. Stem Cells 30, 2054-2062. https://doi.org/10.1002/stem.1135
- Kim, H.J., Park, J.W., Byun, J.H., Vahidi, B., Rhee, S.W., and Jeon, N.L. (2012). Integrated microfluidics platforms for investigating injury and regeneration of CNS axons. Ann. Biomed. Eng. 40, 1268-1276. https://doi.org/10.1007/s10439-012-0515-6
- Kosik, K.S., and Finch, E.A. (1987). MAP2 and Tau segregate into dendrite and axon domains after the elaboration of morphologically distinct neuritis: an immunocytochemical study of cultured rat cerebrum. J. Neurosci. 7, 3142-3153.
- Lee, N., Choi, C., Jeon, I., and Song, J. (2009). Differentiation of GABAergic neurons from human embryonic stem cells. Tissue Eng. Regen. Med. 6, 1359-1365.
- Millet, L.J., and Gillette, M.U. (2012). New perspectives on neuronal development via microfluidic environments. Trends Neurosci. 35, 752-761. https://doi.org/10.1016/j.tins.2012.09.001
- Millet, L.J., Stewart, M.E., Nuzzo, R.G., and Gillette, M.U. (2010). Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices. Lab. Chip 10, 1525-1535. https://doi.org/10.1039/c001552k
- Park, J.W., Vahidi, B., Taylor, A.M., Rhee, S.W., and Jeon, N.L. (2006). Microfluidic culture platform for neuroscience research. Nat. Protoc. 1, 2128-2136. https://doi.org/10.1038/nprot.2006.316
- Park, J.W., Kim, H.J., Byun, J.H., Ryu, H.R., and Jeon, N.L. (2009). Novel microfluidic platform for culturing neurons: culturing and biochemical analysis of neuronal components. Biotechnol. J. 4, 1573-1577. https://doi.org/10.1002/biot.200900159
- Park, J.W., Kim, H.J., Kang, M.W., and Jeon, N.L. (2013). Advances in microfluidics-based experimental methods for neuroscience research. Lab. Chip 13, 509-521. https://doi.org/10.1039/c2lc41081h
- Reubinoff, B.E., Pera, M.F., Fong, C.Y., Trounson, A., and Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399-404. https://doi.org/10.1038/74447
- Rhee, S.W., Taylor, A.M., Tu, C.H., Cribbs, D.H., Cotman, C.W., and Jeon, N.L. (2005). Patterned cell culture inside microfluidic devices. Lab. Chip 2005 5, 102-107. https://doi.org/10.1039/b403091e
- Shin, H.S., Kim, H.J., Min, S.K., Kim, S.H., Lee, B.M., and Jeon, N.L. (2010). Compartmental culture of embryonic stem cell-derived neurons in microfluidic devices for use in axonal biology. Biotechnol. Lett. 32, 1063-1070. https://doi.org/10.1007/s10529-010-0280-2
- Taylor, A.M., Rhee, S.W., and Jeon, N.L. (2006). Microfluidic chambers for cell migration and neuroscience research. Methods Mol. Biol. 321, 167-177.
- Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147. https://doi.org/10.1126/science.282.5391.1145
피인용 문헌
- Full biological characterization of human pluripotent stem cells will open the door to translational research vol.90, pp.9, 2016, https://doi.org/10.1007/s00204-016-1763-2
- Controlling Differentiation of Stem Cells for Developing Personalized Organ-on-Chip Platforms 2017, https://doi.org/10.1002/adhm.201700426
- Analytical Techniques in Neuroscience: Recent Advances in Imaging, Separation, and Electrochemical Methods vol.89, pp.1, 2017, https://doi.org/10.1021/acs.analchem.6b04278
- Synaptic compartmentalization by micropatterned masking of a surface adhesive cue in cultured neurons vol.92, 2016, https://doi.org/10.1016/j.biomaterials.2016.03.027
- Real-time Monitoring of Discrete Synaptic Release Events and Excitatory Potentials within Self-reconstructed Neuromuscular Junctions vol.127, pp.32, 2015, https://doi.org/10.1002/ange.201503801
- Depletion of Inositol Polyphosphate 4-Phosphatase II Suppresses Callosal Axon Formation in the Developing Mice vol.39, pp.6, 2016, https://doi.org/10.14348/molcells.2016.0058
- Semaphorin 3C Released from a Biocompatible Hydrogel Guides and Promotes Axonal Growth of Rodent and Human Dopaminergic Neurons vol.22, pp.11-12, 2016, https://doi.org/10.1089/ten.tea.2016.0008
- Microfluidic systems for stem cell-based neural tissue engineering vol.16, pp.14, 2016, https://doi.org/10.1039/C6LC00489J
- The microbiota and autoimmunity: Their role in thyroid autoimmune diseases vol.183, 2017, https://doi.org/10.1016/j.clim.2017.07.001
- Advances in microfluidic platforms for analyzing and regulating human pluripotent stem cells vol.34, 2015, https://doi.org/10.1016/j.gde.2015.07.007
- Real-time Monitoring of Discrete Synaptic Release Events and Excitatory Potentials within Self-reconstructed Neuromuscular Junctions vol.54, pp.32, 2015, https://doi.org/10.1002/anie.201503801
- A Gal-MµS Device to Evaluate Cell Migratory Response to Combined Galvano-Chemotactic Fields vol.7, pp.4, 2017, https://doi.org/10.3390/bios7040054
- Retrograde interferon-gamma signaling induces major histocompatibility class I expression in human-induced pluripotent stem cell-derived neurons vol.5, pp.2, 2017, https://doi.org/10.1002/acn3.516
- A monitoring system for axonal growth dynamics using micropatterns of permissive and Semaphorin 3F chemorepulsive signals vol.19, pp.2, 2019, https://doi.org/10.1039/C8LC00845K
- Application of microfluidic systems for neural differentiation of cells vol.2, pp.4, 2019, https://doi.org/10.33218/prnano2(4).181127.2
- Multi-compartment Microfluidic Device Geometry and Covalently Bound Poly-D-Lysine Influence Neuronal Maturation vol.7, pp.None, 2019, https://doi.org/10.3389/fbioe.2019.00084
- Microfluidic three-dimensional cell culture of stem cells for high-throughput analysis vol.11, pp.10, 2019, https://doi.org/10.4252/wjsc.v11.i10.803
- Optogenetics for neural transplant manipulation and functional analysis vol.527, pp.2, 2014, https://doi.org/10.1016/j.bbrc.2020.01.141
- Novel Concept of Micro Patterned Micro Titer Plates Fabricated via UV-NIL for Automated Neuronal Cell Assay Read-Out vol.11, pp.4, 2014, https://doi.org/10.3390/nano11040902
- Directional Growth of Human Neuronal Axons in a Microfluidic Device with Nanotopography on Azobenzene‐Based Material vol.8, pp.11, 2014, https://doi.org/10.1002/admi.202100048