DOI QR코드

DOI QR Code

Stable Liquid Paraffin-in-Water Nanoemulsions Prepared by Phase Inversion Composition Method

조성 상전이 방법으로 제조된 안정한 액상 파라핀-물 나노에멀젼

  • Kim, Eun Hee (Basic Medicine Department, College of Medical Sciences, Jeonju University) ;
  • Cho, Wan Goo (Basic Medicine Department, College of Medical Sciences, Jeonju University)
  • 김은희 (전주대학교 기초의과학과) ;
  • 조완구 (전주대학교 기초의과학과)
  • Received : 2013.10.31
  • Accepted : 2013.12.03
  • Published : 2014.06.30

Abstract

Oil-in-water nanoemulsions were prepared in the system of water/Span 80-Tween 80/long-chain paraffin oil via the PIC (phase inversion composition) method. With the increase of preparation temperature from $30^{\circ}C$ to $80^{\circ}C$, the diameter of emulsion droplets decreased from 120 nm to 40 nm, proving the formation of nanoemulsions. By varying the HLB (hydrophilic lipophilic balance) of mixed surfactants, we found that there was an optimum HLB around 12.0 ~ 13.0 corresponding to the minimum droplet size. The viscosity of nanoemulsions clearly increased with droplet volume fraction, f, but the droplet size slightly increased. Significantly, at ${\phi}{\leq}0.3$, the size distribution of nanoemulsions kept constant more than 2 months. These results proved that the viscous paraffin oil can hardly be dispersed by the PIC method at $30^{\circ}C$, but the increase in preparation temperature makes it possible for producing monodisperse nanoemulsions. Once the nanoemulsion is produced, the stability against Ostwald ripening is outstanding due to the extremely low solubility of the liquid paraffin oil in the continuous phase. The highly stable nanoemulsions are of great importance in cosmetic applications.

물/Span 80-Tween 80/긴 사슬 파라핀 오일 계에서 PIC (조성 상전이) 방법을 이용하여 O/W 나노에멀젼을 제조하였다. 제조 온도를 $30^{\circ}C$에서 $80^{\circ}C$로 상승시킴에 따라 제조된 나노에멀젼의 입경은 120 nm에서 40 nm로 감소하여 나노에멀젼을 형성하였다. 혼합 계면활성제의 HLB를 변화시킴에 따라 12.0 ~ 13.0 부근에서 가장 작은 입경을 형성하는 최적 HLB가 존재하였다. 나노에멀젼의 점도는 액적의 부피 분율(${\phi}$)에 따라 현격하게 증가하였으나, 입경의 크기는 약간 증가하였다. 그리고, ${\phi}{\leq}0.3$ 조건에서 나노에멀젼의 크기 분포는 2개월 이상 일정하게 유지 되었다. 이러한 결과는 점성 파라핀 오일의 경우 $30^{\circ}C$에서는 PIC 방식으로 거의 분산할 수 없음을 보여주지만, 제조 온도가 증가할 경우 단 분산 나노에멀젼의 제조가 가능하다는 것을 보여준다. 나노에멀젼이 생성되면, Ostwald ripening에 대한 안정성은 연속 상에서 액상 파라핀 오일의 매우 낮은 용해도로 인해 안정하게 되며, 이는 화장품 응용에서 매우 중요하다.

Keywords

References

  1. O. Sonneville-Aubrun, J.-T. Simonnet, and F. L'. Alloret, Nanoemulsions: a new vehicle for skincare products, Adv. Colloid Interface Sci., 108-109, 145 (2004). https://doi.org/10.1016/j.cis.2003.10.026
  2. W. Liu, D. Sun, C. Li, Q. Liu, and J. Xu, Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method, J. Colloid Interface Sci., 303(2), 557 (2006). https://doi.org/10.1016/j.jcis.2006.07.055
  3. A. Forgiarini, J. Esquena, C. Gonzalez, and C. Solans, Formation of nano-emulsions by low-energy emulsification methods at constant temperature, Langmuir, 17, 2076 (2001). https://doi.org/10.1021/la001362n
  4. P. Fernandez, V. Andra, J. Rieger, and A. Kuhnle, Nano-emulsion formation by emulsion phase inversion, Colloids Surf. A, 251, 53 (2004). https://doi.org/10.1016/j.colsurfa.2004.09.029
  5. H. Sagitani, Making homogeneous and fine droplet O/W emulsions using nonionic surfactants, JAOCS, 58, 738 (1981). https://doi.org/10.1007/BF02899466
  6. L. Dai, W. Li, and X. Hou, Effect of the molecular structure of mixed nonionic surfactants on the temperature of miniemulsion formation, Colloids Surf. A, 125(1), 27 (1997). https://doi.org/10.1016/S0927-7757(96)03859-9
  7. I. Sole, C. M. Pey, A. Maestro, C. Gonzalez, M. Porras, C. Solans, and J. M. Gutierrez, Nano-emulsions prepared by the phase inversion composition method: Preparation variables and scale up, J. Colloid Interface Sci., 344(2), 417 (2010). https://doi.org/10.1016/j.jcis.2009.11.046
  8. I. Sole, A. Maestro, C. Gonzalez, C. Solans, and J. M. Gutierrez, Optimization of nano-emulsion preparation by low-energy methods in an ionic surfactant system, Langmuir, 22, 8326 (2006). https://doi.org/10.1021/la0613676
  9. R. T. C. Ju, C. W. Frank, and A. P. Gast, CONTIN analysis of colloidal aggregates, Langmuir, 8(9), 2165 (1992). https://doi.org/10.1021/la00045a016
  10. L. Yu, C. Li, J. Xu, J. C. Hao, and D. J. Sun, Highly stable concentrated nanoemulsions by the phase inversion composition method at elevated temperature, Langmuir, 28(41), 14547 (2012). https://doi.org/10.1021/la302995a
  11. P. Izquierdo, J. Feng, J. Esquena, T. F. Tadros, J. C. Dederen, M. J. Garcia, N. Azemar, and C. Solans, The influence of surfactant mixing ratio on nano-emulsion formation by the PIT method, J. Colloid Interface Sci., 285, 388 (2005). https://doi.org/10.1016/j.jcis.2004.10.047
  12. C. M. Pey, A. Maestro, I. Sole, C. Gonzalez, C. Solans, and J. M. Gutierrez, Optimization of nano-emulsions prepared by low energy emulsification methods at constant temperature using a factorial design study, Colloids Surf. A, 288, 144 (2006). https://doi.org/10.1016/j.colsurfa.2006.02.026
  13. M. Hessien, N. Singh, C. Kim, and E. Prouzet, Stability and tunability of O/W nanoemulsions prepared by phase inversion composition, Langmuir, 27(6), 2299 (2011). https://doi.org/10.1021/la104728r
  14. A. Maestro, I. Sole, C. Gonzalez, C. Solans, and J. M. Gutierrez, Influence of the phase behavior on the properties of ionic nanoemulsions prepared by the phase inversion composition method, J. Colloid Interface Sci., 327, 433 (2008). https://doi.org/10.1016/j.jcis.2008.07.059
  15. D. Morales, C. Solans, J. M. Gutierrez, M. J. Garcia-Celma, and U. Olsson, Optimization of nanoemulsion preparation by low-energy methods in an ionic surfactant system, Langmuir, 22, 3014 (2006). https://doi.org/10.1021/la052324c
  16. L. Wang, X. Li, G. Zhang, J. Dong, and J. Eastoe, Oil-in-water nanoemulsions for pesticide formulations, J. Colloid Interface Sci., 314, 230 (2007). https://doi.org/10.1016/j.jcis.2007.04.079
  17. S. Graves, K. Meleson, J. Wilking, M. Y. Lin, and T. G. Mason, Structure of concentrated nanoemulsions, J. Chem. Phys., 122, 134703 (2005). https://doi.org/10.1063/1.1874952
  18. L. Wang, K. J. Mutch, J. Eastoe, R. K. Heenan, and J. Dong, Nanoemulsions prepared by a two-step low-energy process, Langmuir, 24, 6092 (2008). https://doi.org/10.1021/la800624z
  19. D. Morales, J. M. Gutierrez, M. J. Garcia-Celma, and Y. C. Solans, A study of the relation between bicontinuous microemulsions and oil/water nano-emulsion formation, Langmuir, 19, 7196 (2003). https://doi.org/10.1021/la0300737
  20. P. Taylor, Ostwald ripening in emulsions, Adv. Colloid Interface Sci., 75, 107 (1998). https://doi.org/10.1016/S0001-8686(98)00035-9
  21. T. G. Mason, J. N. Wilking, K. Meleson, C. B. Chang, and S. M. Graves, Nanoemulsions: Formation, structure, and physical properties, J. Phys. Condens. Matter, 18, 635 (2006). https://doi.org/10.1088/0953-8984/18/41/R01
  22. M. M. Fryd and T. G. Mason, Nanoinclusions in cryogenically quenched nanoemulsions, Annu. Rev. Phys. Chem., 63, 493 (2012). https://doi.org/10.1146/annurev-physchem-032210-103436
  23. C. Solans, P. Izquierdo, J. Nolla, N. Azemar, and M. J. Garcia-Celma, Nanoemulsions, Curr. Opin. Colloid Interface Sci., 10, 102 (2005). https://doi.org/10.1016/j.cocis.2005.06.004
  24. P. Taylor, Ostwald ripening in emulsions: estimation of solution thermodynamics of the disperse phase, Adv. Colloid Interface Sci., 106, 261 (2003). https://doi.org/10.1016/S0001-8686(03)00113-1