DOI QR코드

DOI QR Code

Investigation of Interfacial Adhesion of Different Shapes of Nano Carbon Fillers Reinforced Glass Fiber/Epoxy Composites by Spray Coating

형상이 다른 나노입자 스프레이 코팅에 따른 탄소계 강화 유리섬유와 에폭시 수지간 계면강도 관찰

  • 권동준 (경상대학교 나노신소재융합공학과) ;
  • 왕작가 (경상대학교 나노신소재융합공학과) ;
  • 최진영 (경상대학교 나노신소재융합공학과) ;
  • 신평수 (경상대학교 나노신소재융합공학과) ;
  • 이은선 (한국복합소재 주식회사) ;
  • 박종만 (경상대학교 나노신소재융합공학과)
  • Received : 2014.02.24
  • Accepted : 2014.06.24
  • Published : 2014.06.30

Abstract

Manufacture of nancomposites has simple process for developing nanocomposites due to the increasing applications using nanofillers. This work studied nanofiller coated glass fiber for reinforcing material with good wetting and conductivity and the morphology of nanofiller coated glass fiber was analyzed by FE-SEM. The durability of reinforced glass fiber was investigated with different shapes of nanofillers using sonication rinsing method. Fatigue test was performed to evaluate the adhesion of reinforcing interface and stability of nanofiller coating layer for single fiber reinforced composites. Apparent modulus and conductivity of nanofiller coating layer were evaluated to realize multifunctional of nanocomposites. Fiber type of nanofiller was better than plate type due to better cohesion between fiber and nanofillers. At last, the stability of fiber type nanofiller of coating layer has better durability and conductivity than plate type case.

나노입자에 대한 복합재료 수요가 증가되면서 효과적인 나노입자 보강재를 이용한 나노복합재료 제조공정 단순화를 추구하고 있다. 본 연구에서는 나노입자를 활용하여 전도성과 계면 강도를 향상시킨 나노입자 강화유리섬유 소재에 대한 연구를 진행하였다. 탄소계 나노입자의 형상에 따른 유리섬유 표면에 흡착된 나노입자 상태를 FE-SEM으로 분석하였다. 나노입자 코팅층의 내구성을 평가하기 위한 방법으로 초음파 세척과정에 따른 나노입자의 세척 정도를 분석하여 탄소계 나노입자의 형상에 따른 나노입자 코팅층의 내구성을 분석하였다. 동적피로 실험을 통하여 나노입자 강화 유리섬유/에폭시의 계면강도를 나노입자 형상에 따른 차이에 따라 비교하였다. 나노입자 코팅층의 내구성은 단섬유 강화 복합재료시편을 이용하여 분석하였다. 겉보기 강성도 결과와 나노입자코팅층의 전도성 변화를 분석하여 코팅층의 다기능성을 분석할 수 있었다. 판상형의 나노입자 보다는 섬유 형태의 나노입자가 유리섬유 표면에 흡착성이 용이하였다. 계면 내구성 및 안정성에 효과가 있음을 확인하였다.

Keywords

References

  1. Nabarun, R., Rajatendu, S., and Anil, K.B., "Modifications of Carbon for Polymer Composites and Nanocomposites," Progress in Polymer Science, Vol. 37, No. 6, 2012, pp. 781-819. https://doi.org/10.1016/j.progpolymsci.2012.02.002
  2. Sarita, K., Susheel, K., Annamaria, C., James, N., Youssef, H., and Rajesh, K., "Surface Modification of Inorganic Nanoparticles for Development of Organic-inorganic Nanocomposites - A Review," Progress in Polymer Science, Vol. 38, No. 8, 2013, pp. 1232-1261. https://doi.org/10.1016/j.progpolymsci.2013.02.003
  3. Zhidong, H., and Alberto, F., "Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review," Progress in Polymer Science, Vol. 36, No. 7, 2011, pp. 914-944. https://doi.org/10.1016/j.progpolymsci.2010.11.004
  4. Petar, D.P., and Georgi, L.G., "Fabrication of Super-macroporous Nanocomposites by Deposition of Carbon Nanotubes onto Polymer Cryogels," European Polymer Journal, Vol. 48, No. 8, 2012, pp. 1366-1373. https://doi.org/10.1016/j.eurpolymj.2012.05.002
  5. Merlin, T., Mahesh, H., Jonathan, T., and Shaik, J., "Influence of Functionalization on Properties of MWCNT-epoxy Nanocomposites," Materials Science and Engineering A, Vol. 528, 2011, pp. 1192-1200. https://doi.org/10.1016/j.msea.2010.09.095
  6. Charles, D.W., Marc, J.P., Karl, W.P., Gregory, H., Rick, B., and Catherine, B., "Nanoscale Structure and Local Mechanical Properties of Fiber-reinforced Composites Containing MWCNTgrafted Hybrid Glass fibers," Composites Science and Technology, Vol. 72, 2012, pp. 1705-1710. https://doi.org/10.1016/j.compscitech.2012.06.008
  7. Donghai, Z., Lin, Y., Dong, W., Youhong, T., Samir, M., and Yunfa, C., "Assessment of Transverse Impact Damage in GF/EP Laminates of Conductive Nanoparticles Using Electrical Resistivity Tomography," Composites: Part A, Vol. 43, 2012, pp. 1587-1598. https://doi.org/10.1016/j.compositesa.2012.04.012
  8. Kim, M.G., Moon, J.B., and Kim, C.G., "Effect of CNT Functionalization on Crack Resistance of a Carbon/epoxy Composite at a Cryogenic Temperature," Composites: Part A, Vol. 43, 2012, pp. 1620-1627. https://doi.org/10.1016/j.compositesa.2012.04.001
  9. Varela, R.H., Bittolo, B.R., Rodriguez, P.I., Valentini, L., and Martin, G.I., "Processing and Functionalization Effect in CNF/ PMMA Nanocomposites," Composites Part A, Vol. 43, No. 4, 2012, pp. 711-721.
  10. Wang, Z.J., Kwon, D.J., Gu, G.Y., Kim, H.S., Kim, D.S., Lee, C.S., and Park, J.M., "Evaluation of Mechanical Properties and Damage Sensing of CNT-Polypropylene Composites by Electro- Micromechanical Techniques," Journal of the Korean Society for Composite Materials, Vol. 26, No. 1, 2013, pp. 1-6. https://doi.org/10.7234/kscm.2013.26.1.1
  11. Gu, G.Y., Wang, Z.J., Kwon, D.J., and Park, J.M., "Interfacial Durability and Acoustic Properties of Transparent xGnP/ PVDF/xGnP Graphite Composites Film for Acoustic Actuator," Journal of the Korean Society for Composite Materials, Vol. 25, No. 3, 2012, pp. 70-75. https://doi.org/10.7234/kscm.2012.25.3.070
  12. Jang, J.H., Yi, J.W., Lee, W.O., Lee, H.G., Um, M.K., Kim, J.B., and Byun, J.H., "Dispersion and Property Evaluation of Nanocomposites by Aspect Ratio of MWCNT," Journal of the Korean Society for Composite Materials, Vol. 23, No. 3, 2010, pp. 58-63. https://doi.org/10.7234/kscm.2010.23.3.058
  13. Kwon, D.J., Wang, Z.J., Kim, J.J., Jang, K.W., and Park, J.M., "Prediction Method of Dispersion Condition for Reinforced Epoxy in Nano SiC Particles Using Capacitance Measurement," Journal of the Korean Society for Composite Materials, Vol. 26, No. 6, 2013, pp. 337-342. https://doi.org/10.7234/composres.2013.26.6.337
  14. Choi, O., Lee, W.O., Lee, S.B., Yi, J.W., Kim, J.B., Choe, H.S., and Byun, J.H., "CNT and CNF Reinforced Carbon Fiber Hybrid Composites by Electrophoresis Deposition," Journal of the Korean Society for Composite Materials, Vol. 23, No. 3, 2010, pp. 7-12. https://doi.org/10.7234/kscm.2010.23.3.007
  15. Park, J.M., Kim, D.S., Kong, J.W., Kim, M.Y., Kim, W.O., and Park, I.S., "Evaluation of Interfacial Properties on the Electrodeposited Carbon Fiber Reinforced Polyetherimide Toughened Epoxy Composites using Micromechanical Test," Journal of the Korean Society for Composite Materials, Vol. 15, No. 3, 2002, pp. 34-44.
  16. Park, J.E., and Choi, N.S., "A Novel Hemispherical Microbond Specimen for Evaluating the Interfacial Shear Strength of Single Fiber Composite," Journal of the Korean Society for Composite Materials, Vol. 21, No. 2, 2008, pp. 25-30.
  17. Park, J.M., Lee, S.L., Kim, J.W., and Yoon, D.J., "Nondestructive Evaluation and Microfailure Mechanisms of Single Fibers/Brittle Cement Matrix Composites using Electro-Micromechanical Technique and Acoustic Emission," Journal of the Korean Society for Composite Materials, Vol. 14, No. 3, 2001, pp. 18-31.
  18. Kwon, D.J., Wang, Z.J., Gu, G.Y., Um, M.K., and Park, J.M., "Inherent and Interfacial Evaluation of Fibers/Epoxy Composites by Micromechanical Tests at Cryogenic Temperature," Journal of the Korean Society for Composite Materials, Vol. 24, No. 4, 2011, pp. 11-16. https://doi.org/10.7234/kscm.2011.24.4.011