DOI QR코드

DOI QR Code

Processing and Flexural Properties of Chopped Jute Fiber Reinforced PLA Sandwich Composites

황마 단섬유 강화 폴리유산 샌드위치 복합재의 제작 및 굽힘 특성

  • 이규희 (서울대학교 기계항공공학부 기계전공 대학원) ;
  • 노정우 (서울대학교 기계항공공학부 기계전공 대학원) ;
  • 이우일 (서울대학교 기계항공공학부 기계전공)
  • Received : 2014.01.06
  • Accepted : 2014.06.23
  • Published : 2014.06.30

Abstract

In this study, we fabricated jute fiber reinforced polylactic acid (PLA) composite in the form of sandwich panel structure which includes core foam of chopped jute fiber reinforced PLA and outer skin layer of continuous glass fiber reinforced PLA. Flexural properties of the composite were assessed for different jute fiber weight fractions. Density of the core foam ranged from 0.31 to 0.67 $g/cm^3$ and void content fraction 0.51 to 0.71. The maximum flexural strength was 92.7 MPa at 12.5 wt.% of jute fiber content, and the maximum flexural modulus was 7.58 GPa at 30.0 wt.%. Cost analysis was also conducted. The cost to enhance the flexural strength of the applied structure was estimated to be $0.010USD/m^3/MPa$ for 12.5 wt.% fiber content.

본 연구에서는 황마 단섬유 강화 폴리유산을 코어 폼으로 하고 연속 유리 섬유 강화 폴리유산을 외곽 스킨으로 하는 샌드위치 패널 구조의 황마 단섬유 강화 폴리유산 복합재료를 제작하였고, 황마 섬유 무게 비에 따른 복합재의 굽힘 특성을 관찰하였다. 코어 폼의 밀도는 0.31-0.67 $g/cm^3$ 기공함량비는 0.51-0.71이었다. 최대 굽힘강도는 황마 섬유 무게비 12.5 wt.%에서 92.7 MPa, 최대 굽힘 탄성계수는 황마 섬유 무게비 30.0 wt.%에서 7.58 GPa 으로 측정되었다. 경제성 분석을 실시했으며 적용 부재의 굽힘 강도를 향상시키기 위한 비용은 황마 섬유 무게 비가 12.5 wt.%일 때 $0.010USD/m^3/MPa$로 계산되었다.

Keywords

References

  1. Yi, Z., Shah, H., and Yiqi, Y., "Lightweight Composites from Long Wheat Straw and Polypropylene Web," Bioresource Technology, Vol. 101, 2010, pp. 2026-2033. https://doi.org/10.1016/j.biortech.2009.10.042
  2. Mohanty, A.K., Misra, M., and Drzal, L.T., "Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World," Journal of Polymers and the Environment, Vol. 10, 2002, pp. 19-26. https://doi.org/10.1023/A:1021013921916
  3. Buckmaster, D., and Hwang, T.W., "Pedestrian Safety Validation of A High Performance Thermoplastic Composite Hood," Proceeding of the 7th Automotive Composites Conference Exhibition, 2007.
  4. Holbery, J., and Houston, D., "Natural-fiber-reinforced Polymer Composites in Automotive Applications," The Journal of The Minerals, Metals & Materials Society, Vol. 58, Issue. 11, 2006, pp. 80-86.
  5. Stapleton, S.E., and Adams, D.O., "Core Design for Energy Absorption in Sandwich Composites," Journal of Polymers and the Environment, Vol. 10, 2002, pp. 19-26. https://doi.org/10.1023/A:1021013921916
  6. www.lucintel.com/LucintelBrief/PotentialofNaturalfibercomposites-Final.pdf
  7. Bledzki, A.K., Reihmane, S., and Gassan, J., "Properties and Modification Methods for Vegetable Fibers for Natural Fiber Composites," Jornal of Applied Polymer Science, Vol. 59, 1996, pp. 1329-1336. https://doi.org/10.1002/(SICI)1097-4628(19960222)59:8<1329::AID-APP17>3.0.CO;2-0
  8. Joshi, S.V., Drzal, L.T., Mohanty, A.K., and Arora, S., "Are Natural Fiber Composites Environmentally Superior tO Glass Fiber Reinforced Composites?," Composites: Part A, Vol. 35, 2004, pp. 371-376. https://doi.org/10.1016/j.compositesa.2003.09.016
  9. Nabi Saheb, D., and Jog, J.P., "Natural Fiber Polymer Composites: A Review," Advanced in Polymer Technology, Vol. 18, Issue. 4, 1999, pp. 351-363. https://doi.org/10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X
  10. Shim. J.H., Cho D.H., and Yoon, J.S., "Natural Fibers and Biocomposites," Polymer Science and Technology, Vol. 19, No. 4, 2008, pp. 299-306. https://doi.org/10.1002/pat.1010
  11. Bos, H.L., The Potential of Flax Fibers as Reinforcement for Composite Materials, Ph.D Thesis, Technische Universiteit Eindhoven, Nederland, 2004.
  12. Sparnins, E., Mechanical Properties of Flax Fibers and Their Composites, Licentiate Thesis, Lulea University of Technology, Sweden, 2006.
  13. Roh, J.U., and Lee, U.I., "Manufacture of Continuous Glass Fiber Reinforced Polylactic Acid (PLA) Composite and Its Properties," Composite Research, Vol. 26, No. 4, 2013, pp. 230-234 https://doi.org/10.7234/composres.2013.26.4.230
  14. EL-Dessouky, H.M., and Lawrence, C.A., "Ultra-lightweight Carbon Fibre/Thermoplastic Composite Material Using Spread Tow Technology," Composite Part B: Engineering, Vol. 50, 2013, pp. 91-97. https://doi.org/10.1016/j.compositesb.2013.01.026
  15. www.jute.org/IJSG%20Publications/Jute%20Matters%20Volume%201%20Issue%205%202013.pdf
  16. www.alibaba.com//trade/search?fsb=y&IndexArea=product_en&CatId=&SearchText=glass+fiber
  17. Huda, M.S., Drzal, L.T., Mohanty A.K., and Misra M., "Chopped Glass and Recycled Newspaper as Reinforcement Fibers in Injection Molded Poly(lactic acid)(PLA) Composites: A Comparative Study," Composites Science and Technology, Vol. 66, 2006, pp. 1813-1824. https://doi.org/10.1016/j.compscitech.2005.10.015
  18. d'Almeida, J.R.M., "Analysis of Cost and Flexural Strength Performance of Natural Fiber-polyester Composites," Polymer- Plastics Technology and Engineering, Vol. 40, No. 2, 2001, pp. 205-215. https://doi.org/10.1081/PPT-100000065

Cited by

  1. Thermal Characteristics of Hybrid Insert for Carbon Composite Satellite Structures vol.28, pp.4, 2015, https://doi.org/10.7234/composres.2015.28.4.162
  2. A New Mixing Method of SiC Nanoparticle Reinforced Epoxy Composites with Large Concentration of SiC Nanoparticle vol.29, pp.4, 2016, https://doi.org/10.7234/composres.2016.29.4.223
  3. Effects of Solvent-Based Dilution Condition on CNT Dispersion in CNT/Epoxy Composites vol.29, pp.4, 2016, https://doi.org/10.7234/composres.2016.29.4.125
  4. 건축자재용 폴리락타이드의 난연성 향상에 관한 연구 vol.21, pp.2, 2014, https://doi.org/10.5345/jkibc.2021.21.2.113