참고문헌
- Ananthaswamy, H. N. and Eisenstark, A. 1977. Repair of hydrogen peroxide-induced single-strand breaks in Escherichia coli deoxyribonucleic acid. J. Bacteriol. 130:187-191.
- Anderson, A. J., Britt, D. W., Johnson, J., Narisimhan, G. and Rodriguez. 2005. Physicochemical parameters influencing the of Pseudomonas chlororaphis O6. Water Sci. Tech. 52:21-25.
- Bateman, A. and Bycroft, M. 2000. The structure of a LysM domain from E. coli membrane-bound lytic murein transglyosylate D (MltD). J. Mol. Biol. 299:1113-1119. https://doi.org/10.1006/jmbi.2000.3778
- Bitter, W. 2003. Secretins of Pseudomonas aeruginosa: large holes in the outer membrane. Arch. Microbiol. 179:307-314. https://doi.org/10.1007/s00203-003-0541-8
- Bloemberg, G. V. and Lugtenberg, B. J. J. 2001. Multiple basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4:343-350. https://doi.org/10.1016/S1369-5266(00)00183-7
- Brencic, A., McFarland, K. A., McManus, H. R., Castang, S., Mogno, I., Dove, S. L. and Lory, S. 2009. The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol. Microbiol. 73:434-445. https://doi.org/10.1111/j.1365-2958.2009.06782.x
- Briggs, G. S., Yu, J., Mahdi, A. A. and Lloyd, R. G. 2010. The RdgC protein employs a novel mechanism involving a finger domain to bind to circular DNA. Nucleic Acids Res. 38:6433-6446. https://doi.org/10.1093/nar/gkq509
- Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J.-Y., Lee, Y.-H., Cho, B. H., Yang, K.-Y., Ryu, C.-M. and Kim, Y. C. 2008. 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21:1067-1075. https://doi.org/10.1094/MPMI-21-8-1067
- Cho, S. M., Kang, B. R., Kim, J. J. and Kim, Y. C. 2012. Induced systemic drought and salt tolerance by Pseudomonas chlororaphis O6 root colonization is mediated by ABA-independent stomatal closure. Plant Pathol. J. 28:202-206. https://doi.org/10.5423/PPJ.2012.28.2.202
- Crespo, M. C. A. and Valverde, C. 2009. A single mutation in the oprF mRNA leader confers strict translational control by the Gac/Rsm system in Pseudomonas fluorescens CHA0. Curr. Microbiol. 58:182-188. https://doi.org/10.1007/s00284-008-9306-6
- Dubis, C., Keel, C. and Haas, D. 2007. Dialogues of root-colonizing biocontrol pseudomonads. Eur. J. Plant Pathol. 119:311-328. https://doi.org/10.1007/s10658-007-9157-1
- Elhai, J. and Wolk, C. P. 1988. A versatile class of positiveselection vectors based on the nonviability of palindromecontaining plasmids that allows cloning into long polylinkers. Gene 68:119-138. https://doi.org/10.1016/0378-1119(88)90605-1
- Fito-Boncompte, L., Chapalain, A., Bouffartigues, E., Chaker, H., Lesouhaitier, O., Gicquel, G. Bazire, A., Madi, A., Connil, N., Veron, W., Taupin, L., Toussaint, B., Cornelis, P., Wei, Q., Shioya, K., Deziel, E., Feuilloley, M. G. J., Orange, N., Dufour, A. and Chevalier, S. 2011. Full virulence of Pseudomonas aeruginosa requires OprF. Infect. Immun. 79:1176-1186. https://doi.org/10.1128/IAI.00850-10
- Haas, D. and Defago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3:307-319. https://doi.org/10.1038/nrmicro1129
- Han, S. H., Anderson, A. J., Yang, K. Y., Cho, B. H., Kim, K. Y., Lee, M. C., Kim, Y. H. and Kim, Y. C. 2006. Multiple determinants influence root colonization and induction of induced systemic resistance by Pseudomonas chlororaphis O6. Mol. Plant Pathol. 7:463-472. https://doi.org/10.1111/j.1364-3703.2006.00352.x
- Hassan, K. A., Johnson, A., Shaffer, B. T., Ren, Q., Kidarsa, T. A., Elbourne, L. D. H., Hartney, S., Duboy, R., Goebel, N. C., Zabriskie, T. M., Paulsen, I. T. and Loper, J. E. 2010. Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ. Microbiol. 12:899-915. https://doi.org/10.1111/j.1462-2920.2009.02134.x
- Kang, B. R., Cho, B. H., Anderson, A. J. and Kim, Y. C. 2004. The global regulator GacS of a biocontrol bacterium Pseudomonas chlororaphis O6 regulates transcription from the rpoS gene encoding a stationary-phase sigma factor and affects survival in oxidative stress. Gene 325:137-143. https://doi.org/10.1016/j.gene.2003.10.004
- Kang, B. R., Han, S. H., Zdor, R. E. Anderson, A. J., Spencer, M., Yang, K. Y., Kim, Y. H., Lee, M. C., Cho, B. H. and Kim. Y. C. 2007. Inhibition of seed germination and induction of systemic disease resistance by Pseudomonas chlororaphis O6 requires phenazine production regulated by the global regulator, GacS. J. Microbiol. Biotechnol. 17:586-593.
- Kim, J. S., Kim, Y. H., Anderson, A. J. and Kim, Y. C. 2014a. The sensor kinase GacS negatively regulates flagellar formation and motility in a biocontrol bacterium, Pseudomonas chlororaphis O6. Plant Pathol. J. 30:215-219. https://doi.org/10.5423/PPJ.NT.11.2013.0109
- Kim, J. S., Kim, Y. H., Park, J. Y., Anderson, A. J. and Kim, Y. C. 2014b. The global regulator GacS regulates biofilm formation in Pseudomonas chlororaphis O6 differently with carbon source. Can. J. Microbiol. 60:133-138. https://doi.org/10.1139/cjm-2013-0736
- Lee, J. H., Ma, K. C., Ko, S. J., Kang, B. R., Kim, I. S. and Kim, Y. C. 2011. Nematicidal activity of nonpathogenic biocontrol bacterium, Pseudomonas chlororaphis O6. Curr. Microbiol. 62:746-751. https://doi.org/10.1007/s00284-010-9779-y
- Loper, J. E., Hassan, K. A., Mavrodi, D. V., Davis, E. W. 2nd, Lim, C. K., Shaffer, B. T., Elbourne, L. D., Stockwell, V. O., Hartney, S. L., Breakwell, K., Henkels, M. D., Tetu, S. G., Rangel, L. I., Kidarsa, T. A., Wilson, N. L., van de Mortel, J. E., Song, C., Blumhagen, R., Radune, D., Hostetler, J. B., Brinkac, L. M., Durkin, A. S., Kluepfel, D. A., Wechter, W. P., Anderson, A. J., Kim, Y. C., Pierson, L. S. 3rd, Pierson, E. A., Lindow, S. E., Kobayashi, D. Y., Raaijmakers, J. M., Weller, D.M., Thomashow, L. S., Allen, A. E. and Paulsen, I. T. 2012.Comparative genomics of plant-associated Pseudomonasspp.: insights into diversity and inheritance of traits involvedin multitrophic interactions. PLoS Genet. 8:e1002784. https://doi.org/10.1371/journal.pgen.1002784
- Miller, C. D., Kim, Y. C. and Anderson, A. J. 1997. Cloning and mutational analysis of the gene for the stationary-phase inducible catalase (catC) from Pseudomonas putida. J. Bacteriol. 179:5241-5245. https://doi.org/10.1128/jb.179.16.5241-5245.1997
- Oh, S. A., Kim, J. S., Han, S. H., Park, J. Y., Dimkpa, C., Edlund, C., Anderson, A. J. and Kim, Y. C. 2013a. The GacS-regulated sigma factor RpoS governs production of several factors involved in biocontrol activity of the rhizobium Pseudomonas chlororaphis O6. Can. J. Microbiol. 59:556-562. https://doi.org/10.1139/cjm-2013-0062
- Oh, S. A., Kim, J. S., Park, J. Y., Han, S. H., Dimkpa, C., Anderson, A. J. and Kim, Y. C. 2013b. The RpoS sigma factor negatively regulates production of IAA and siderophore in a biocontrol rhizobacterium, Pseudomonas chlororaphis O6. Plant Pathol. J. 29:323-329. https://doi.org/10.5423/PPJ.NT.01.2013.0013
- Park, J. Y., Oh, S. A., Anderson, A. J., Neiswender, J., Kim, J. C. and Kim, Y. C. 2011. Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. Lett. Appl. Microbiol. 52:532-537. https://doi.org/10.1111/j.1472-765X.2011.03036.x
- Raaijmakers, J. M., Vlami, M. and de Souza, J. T. 2002. Antibiotic production by bacterial biocontrol agents. Anton. Leeuw. Int. J. G. 81:537-547. https://doi.org/10.1023/A:1020501420831
- Selin, C., Fernando, W.G., and de Kievit, T. 2012. The PhzI/PhzR quorum-sensing system is required for pyrrolnitrin and phenazine production, and exhibits cross-regulation with RpoS in Pseudomonas chlororaphis PA23. Microbiol. 158: 896-907. https://doi.org/10.1099/mic.0.054254-0
- Wang, D., Lee, S.H., Seeve, C., Yu, J. M., Pierson, L. S. 3rd, and Pierson, E. A. 2013. Roles of the Gac-Rsm pathway in the regulation of phenazine biosynthesis in Pseudomonas chlororaphis 30-84. MicrobiologyOpen 2:505-524. https://doi.org/10.1002/mbo3.90
- Wessel, A. K., Liew, J., Kwon, T., Marcotte, E. M. and Whiteley, M. 2013. Role of Pseuomonas aeruginosa peptidoglycanassociated outer membrane proteins in vesicle formation. J. Bacteriol. 195:213-219. https://doi.org/10.1128/JB.01253-12
- Zuccotti, S., Zanardi, D., Rosano, C., Sturla, L., Tonetti, M. and Bolognesi, M. 2001. Kinetic and crystallographic analyses support a sequential-ordered Bi Bi catalytic mechanism for Escherichia coli glucose-1-phosphate thymidylyltransferase. J. Mol. Biol. 313:831-843. https://doi.org/10.1006/jmbi.2001.5073
피인용 문헌
- A novel papillation assay for the identification of genes affecting mutation rate in Pseudomonas putida and other pseudomonads vol.790, 2016, https://doi.org/10.1016/j.mrfmmm.2016.06.002
- Ag nanoparticles generated using bio-reduction and -coating cause microbial killing without cell lysis vol.29, pp.2, 2016, https://doi.org/10.1007/s10534-015-9906-0
- Factors Associated with the Occurrence of Fruit Skin Stain during Growing Period in ‘Niitaka’ Pear vol.33, pp.3, 2014, https://doi.org/10.5338/KJEA.2014.33.3.198
- Small RNAs regulate the biocontrol property of fluorescent Pseudomonas strain Psd vol.196, 2017, https://doi.org/10.1016/j.micres.2016.12.006
- Regulation of GacA in Pseudomonas chlororaphis Strains Shows a Niche Specificity vol.10, pp.9, 2015, https://doi.org/10.1371/journal.pone.0137553
- Impact of a Recombinant Biocontrol Bacterium, Pseudomonas fluorescens pc78, on Microbial Community in Tomato Rhizosphere vol.32, pp.2, 2016, https://doi.org/10.5423/PPJ.OA.08.2015.0172
- Functional identification of the prnABCD operon and its regulation in Serratia plymuthica vol.102, pp.8, 2018, https://doi.org/10.1007/s00253-018-8857-0