DOI QR코드

DOI QR Code

컵버너시험에서 소화기준에 따른 불활성기체의 소화농도에 대한 정량적 차이

Quantitative Difference in the Extinguishing Concentration of Inert Gases with Fire Suppression Criteria in a Cup Burner Test

  • 투고 : 2014.02.18
  • 심사 : 2014.06.13
  • 발행 : 2014.06.30

초록

본 연구에서는 $CH_4$$C_3H_8$ 연료의 컵버너 비예혼합화염에서 Swing, Rotation, Lifted 및 Blow-out과 같은 화염 불안정성을 발생시키는 불활성기체($N_2$, Ar, $CO_2$ 및 He)의 농도를 측정하였으며, 소화기준(즉, 화염날림 또는 화염불안정성 개시)에 따른 소화농도의 정량적 차이를 검토하였다. 소화농도의 차이는 부상화염의 발생 그리고 낮은 소화성능의 불활성기체일수록 증가됨을 확인하였다. 소화기준에 따른 소화농도의 최대 차이는 $C_3H_8$-air 비예혼합화염의 최대 연료유속의 조건(1.3 cm/s)에서 약 35%이다. 또한 화염 불안정성의 개시를 기준으로 측정된 소화농도는 정확한 그리고 경제적 설계 농도의 관점에서 유용한 정보를 제공할 것으로 기대된다.

The concentrations of inert gases ($N_2$, Ar, $CO_2$ and He) required to induce the flame instabilities such as swing, rotation, lifted and blow-out were measured in a cup burner nonpremixed flames for $CH_4$ and $C_3H_8$ fuels. Quantitative differences in the extinguishing concentration with fire suppression criteria (i.e. blow-out or onset of flame instability) were also examined. It was found that the difference in extinguishing concentration was increased with the appearance of lifted flame and the low extinguishing performance of inert gaseous. The maximum difference in extinguishing concentration with the suppression criteria was approximately 35% at the highest fuel velocity condition (1.3 cm/s) for the $C_3H_8$-air nonpremixed flame. It can be also expected that the extinguishing concentration by the criteria based on the onset of flame instability will provide the useful information from the viewpoint of the accurate and economical design concentration.

키워드

참고문헌

  1. Anon, "Standard on Clean Agent Fire Extinguishing Systems", National Fire Protection Association, NFPA 2001, Quincy, MA (2000).
  2. Anon, "Gaseous Fire Extinguishing Systems - Physical Properties and System Design", International Organization for Standardization, ISO 14520-Part I (2000).
  3. R. Hirst and D. Sutton, "The Effect of Reduced Pressure and Airflow on Liquid Surface Diffusion Flames", Combustion and Flame, Vol. 5, pp. 319-330 (1961). https://doi.org/10.1016/0010-2180(61)90113-4
  4. R. Hirst and K. Booth, "Measurement of Flame-Extinguishing Concentrations", Fire Technology, Vol. 5, pp. 296-315 (1977).
  5. S. Preece, P. Mackay and A. Chattaway, "The Cup Burner Method - A Parametric Analysis of the Factors Influencing the Reported Extinguishing Concentrations of Inert Gases", Halon Options Technical Working Conference, Albuquerque, NM (2003).
  6. Y. Saso, N. Saito and Y. Iwata, "Scale Effects of the Cup Burner on Flame Extinguishing Concentrations", Fire Technology, Vol. 29, No. 1, pp. 22-33 (1993). https://doi.org/10.1007/BF01215356
  7. M. L. Robin and T. F. Rowland, "Development of a Standard Cup-burner Aparatus: NFPA and ISO Standard Methods", Halon Options Technical Working Conference, Albuquerque, NM (1999).
  8. J. A. Senecal, "Revised NFPA Cup-burner Test Method: Improving Reproducibility", Halon Options Technical Working Conference, Albuquerque, NM (2006).
  9. V. R. Katta, F. Takahashi and G. T. Linteris, "Fire-Suppression Characteristics of $CH_3H$ in a Cup Burner", Combustion and Flame, Vol. 144, pp. 645-661 (2006). https://doi.org/10.1016/j.combustflame.2005.09.006
  10. J. A. Senecal, "Flame Extinguishing in the Cup-Burner by Inert Gases", Fire Safety Journal, Vol. 40, pp. 579-591 (2005). https://doi.org/10.1016/j.firesaf.2005.05.008
  11. N. Saito, Y. Ogawa, Y. Saso, C. Liao and R. Sakei, "Flame-Extinguishing Concentrations and Peak Concentrations of $N_2$, Ar, $CO_2$ and their Mixtures for Hydrocarbon Fuels", Fire Safety Journal, Vol. 27, pp. 185-200 (1996). https://doi.org/10.1016/S0379-7112(96)00060-4
  12. F. Takahashi, G. T. Linteris and V. R. Katta, "Suppression of Cup-Burner Flames," 4 th International Symposium on Scale Modeling (ISSM-IV), Cleveland, OH (2003).
  13. F. Takahashi, G. T. Linteris and V. R. Katta, "Physical and Chemical Aspects of Cup-burner Flame Extinguishment", Proceedings of the 13th Annual Halon Options Technical Working Conference, Albuquerque, NM (2005).
  14. F. Takahashi, G. T. Linteris and V. R. Katta, "Extinguishment Mechanisms of Coflow Diffusion Flames in a Cup-Burner Apparatus", Proceedings of the Combustion Institute, Vol. 31, pp. 2721-2729 (2007).
  15. W. M. Pitts, J. C. Yang, R. A. Rryant, L. G. Blevins and M. L. Huber, "Characteristics and Identification of Super- Effective Thermal Fire-Extinguishing Agents", NIST Technical Note 1440, Gaithersburg, MD (2006).
  16. R. J. Santoro, H. G. Semerjian and R. A. Dobbins, "Soot Particle Measurements in Diffusion Flames", Combustion and Flame, Vol. 51, pp. 203-218 (1983). https://doi.org/10.1016/0010-2180(83)90099-8
  17. T. H. Jeong and E. J. Lee, "Flame Instability Pool Fires Near Extinction", The Korean Society of Mechanical Engineers, Vol. 36, No. 12, pp. 1193-1199 (2012). https://doi.org/10.3795/KSME-B.2012.36.12.1193
  18. S. H. Chung and B. J. Lee, "On the Characteristics of Laminar Lifted Flames in a Nonpremixed Jet", Combustion and Flame, Vol. 86, pp. 62-72 (1991). https://doi.org/10.1016/0010-2180(91)90056-H
  19. J. C. Ferreira, "Flamelet Modeling of Stabilization in Turbulent Non-Premixed Combustion", Ph.D. Dissertation, University of Stuttgart (1996).
  20. H. S. Um, K. H. Kim, J. S. Ha, T. K. Kim and J. Park, "Effects of Fuel Nozzle Diameter in the Behavior of Laminar Lifted Flame", Journal of the Korean Institute of Gas, Vol. 12, No. 2, pp. 77-84 (2008).
  21. R. H. Chen, A. Kothawala, M. Chaso and L. P. Chew, "Schmidt Number Effects on Laminar Jet Diffusion Flame Liftoff", Combustion and Flame, Vol. 141, pp. 469-472 (2005). https://doi.org/10.1016/j.combustflame.2005.02.001