Abstract
This study was conducted to evaluate the distribution characteristics of $PM_{10}$ and heavy metals concentrations in the ambient air of Gyeonggi-do area by region and season from February, 2013 to March, 2014. The regression model for the prediction of formation characteristics and contamination degree of $PM_{10}$ and heavy metals by correlation analysis and regression analysis for using the multivariate statistical analysis was also established. The main wind direction during the investigation period was South East (SE) and West South West (WSW) winds, and the concentration of $SO_2$ at Ansan with industrial region showed 1.6 times higher than Suwon, Euiwang with residential region. The concentrations (median) of Pb, Cu and Ni at Ansan showed 3.2~4.5, 1.9~2.2 and 1.7~2.6 times respectively higher than those at Suwon. By the seasonal concentration variation, the concentrations of $PM_{10}$, Pb, Fe and As in winter and spring (December to May) showed 1.7, 1.9, 1.9 and 2.7 times respectively higher than those in summer and fall (June to November). As, Fe and $PM_{10}$ had a big difference by the seasonal factors, and Cu and Ni were evaluated to be influenced by the regional factors. From the results of correlation analysis among the target items, the correlation coefficient of PM and Mn had 0.82 (p/0.01) and that of Fe and Mn had 0.82 (p/0.01), which showed high correlation. And the correlation coefficients for $SO_2$ and Pb, CO and $PM_{10}$ were 0.66 (p/0.01) and 0.62 (p/0.01) respectively. The multiple linear regression models for $PM_{10}$, Pb, Cu, Cr, As, Ni, Fe and Mn were established by independent variables of CO, $SO_2$ and meteorological factors (wind speed, relative humidity). In the regression models, independent variable $SO_2$ was in cause-and-effect relationship with all dependent variables, and $PM_{10}$, Fe and Mn were influenced by CO and wind speed, and Pb, Cu, Ni and As had a main factor of $SO_2$.