DOI QR코드

DOI QR Code

중심외주시 훈련 후 망막 외망상층에서의 신경 재조직화

Neural Reorganization in Retinal Outer Plexiform Layer Induced by Eccentric Viewing Training

  • 서재명 (광양보건대학교 안경광학과)
  • 투고 : 2014.05.10
  • 심사 : 2014.06.18
  • 발행 : 2014.06.30

초록

목적: 단기간의 중심외주시 훈련 후 발생하는 신경의 재조직화의 특성과 호발 위치를 알아보고자 했다. 방법: 정상시력을 가진 성인 14명을 대상으로 21일 간 중심외주시 훈련을 하고 훈련 전후 광지각도와 다국소망막전위도를 측정하여 사후 분석했다. 결과: 중심외주시 훈련 전후 값을 비교한 광지각도 검사(p<0.047)에서 뿐만 아니라 다국소망막전위도 검사에서도 유의한 개선을 보였다(p<0.028). 결론: 시각 말초신경계는 재생이 불가능하지만 단기간의 중심외주시 훈련은 말초신경계에서 신경 재조직화를 발생시킨다.

Purpose: This study was to investigate the properties and the location of neural reorganization following eccentric viewing training. Methods: 14 subjects with normal vision took part in eccentric viewing training. The measurements of the light sensitivity and multifocal electroretinogram were performed before and after the training. Results: The measurements of the light sensitivity and multifocal electroretinogram for pre-eccentric viewing training and post-eccentric viewing training showed the significant difference (p<0.047 and p<0.028, respectively). Conclusions: The retinal outer plexiform layer is unable to regenerate. However, the neural reorganization in the retinal outer plexiform layer is able to take place following eccentric viewing training.

키워드

참고문헌

  1. Katz LC, Crowley JC. Development of cortical circuits: lessons from ocular dominance columns. Nature Rev Neurosci. 2002;3(1):34-42. https://doi.org/10.1038/nrn703
  2. Tzschentke B, Plagemann A. Imprinting and critical periods in early development. World's Poultry Sci J. 2006;62(4):626-637. https://doi.org/10.1079/WPS2006117
  3. Nelson C. Neural plasticity and human development. Current Directions in Psy Sci. 1999;8(2):42-45. https://doi.org/10.1111/1467-8721.00010
  4. Bear MF. Bidirectional synaptic plasticity: from theory to reality. Philosophical trasactions of the royal society of London. Series B: Biological Sciences London. 2003;358:649-655.
  5. Shutter EE, Bearse MA. Theoptic nerve head component of the human ERG. Vis Res. 1999;39(3):419-436. https://doi.org/10.1016/S0042-6989(98)00161-8
  6. Duncan RO, Boynton GM. Cortical magnification within human primary visual cortex correlates with acuity thresholds. Neuron. 2003;38(4):659-671. https://doi.org/10.1016/S0896-6273(03)00265-4
  7. Fahle M, Schid M. Naso-temporal asymmetry of visual perception and of the visual cortex. Vis Res. 1988;28(2):293-300. https://doi.org/10.1016/0042-6989(88)90157-5
  8. Hood DC, et al. International society for clinical electrophysiology of vision. ISCEV standard for clinical multifocal electroretinography (mfERG) (2001 edition). Doc Ophthalmol. 2012;124:1-13.
  9. Kim JK, Jang JH, Cho YW. Corerlation between the visual field test and multifocal electroretinogram in patients with diabetic retionopathy. J Korean Ophthalmol Soc. 2014;55(2):202-208. https://doi.org/10.3341/jkos.2014.55.2.202
  10. Engel SA et al. fMRI of human visual cortex. Nature. 1994;369(6481):525. https://doi.org/10.1038/369525a0
  11. Schumacher EH, Jacho JA, Primo SA, Main Kl, Moloney KP, Kinzel EN et al. Reorganization of visual processing is related to eccentric viewing in patients with macular degeneration. Restor Neurol Neurosci. 2008;26(4-5):391-402.
  12. Nilsson UL, Frennesson C, Nilsson SE. Patients with AMD and a large absolute central scotoma can be trained successfully to use eccentric viewing, as demonstrated in a scanning laser ophthalmoscope. Vis Res. 2003;43(16):1777-1787. https://doi.org/10.1016/S0042-6989(03)00219-0
  13. Schreckenbach U. Untersuchung zum Erfolg einer adaptierten Variante des exzentrischen Sehtrainings nach Nillson bei Sehbehinderungen mit Zentralskotom. Diplomarbeit (Master Thesis). Ernst-Abbe-Hochschule Jena. Germany. 2006;25-78.
  14. Wen Y, Klein M, Hood DC, Birch D. Relationship among multifocal electroretinogram amplitude, visual field sensitivity, and SD-OCT receptor layer thickness in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2012;53(2):833-840. https://doi.org/10.1167/iovs.11-8410
  15. Charlene B et al. Interspecies and gender differences in multifocal electroretinograms of cynomolgus and rhesus macaques. Doc Ophthalmol. 2004;109:73-86. https://doi.org/10.1007/s10633-004-2630-7
  16. Jaegle H, Heine J, Kurtenbach A. L: M-cone ratio estimates of the outer and inner retina and its impact on sex differences in erg amplitudes. Doc Opthalmol. 2006;113:105-113.
  17. Hood DC, Zang X. Multifocal ERG and VEP responses and visual fields: comparing disease-related changes. Doc Ophthalmol. 2000;100:115-137. https://doi.org/10.1023/A:1002727602212
  18. Hood DC. Assessing retinal function with the multifocal technique. Prog Retin Eye Res. 2000;19(5):607-646. https://doi.org/10.1016/S1350-9462(00)00013-6
  19. Holopigian K, Seiple W, Greenstein VC, Hood DC, Carr RE. Local cone and rod system function in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2001;42(3):779-788.
  20. Greenstein VC, Holopigian K, Hood DC, et al. The nature and extent of retinal dysfunction associated with diabetic macular edema. Invest Ophthalmol Vis Sic. 2000;41(11):3643-3654.
  21. Fahle M. Learning to tell apples from oranges. Trends Cog Sci. 2005;9(10):455-457. https://doi.org/10.1016/j.tics.2005.07.005
  22. Xiao et al. Complete transfer of perceptual learning across retinal locations enabled by double training. Current Bio. 2008;18(24):1922-1926. https://doi.org/10.1016/j.cub.2008.10.030
  23. Levi DM, Li RW. Perceptual learning as a potential treatment for amblyopia: A mini-review. Vis Res. 2009;49(21):2535-2549. https://doi.org/10.1016/j.visres.2009.02.010