DOI QR코드

DOI QR Code

A Simple and Clean Method for O-Isopropylidenation of Carbohydrates

  • Rong, Yuan Wei (Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University) ;
  • Zhang, Qi Hua (Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University) ;
  • Wang, Wei (Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University) ;
  • Li, Bao Lin (Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University)
  • Received : 2014.01.04
  • Accepted : 2014.03.10
  • Published : 2014.07.20

Abstract

Keywords

Experimental Section

General Methods. Sulfonated polystyrene cation exchange resin CAT600 was donated by Xian Electric Power Resin Factory, China. It showed a parameter as the density of SO3H groups in 4.9-5.1 mmol/g, specific surface area in 35.0-38.5 m2/g, average pore size in 50-100 Å. Unless otherwise stated, other chemicals (AR) were purchased from commercial sources and used without purification. 1H NMR spectra were recorded using CDCl3 as a solvent on a Bruker Avance 300 MHz spectrometer (75 MHz for 13C NMR). GC analysis was performed on a Shimadzu GC-2010 apparatus equipped with an Rxi-1MS capillary column (30 m × 0.25 mm × 0.25 μm) connected to a hydrogen flame ionization detector. The GC condition was used as follows: a sampling/ detector temperature of 250 ℃, a column temperature of 190 ℃, nitrogen as carrier gas, nitrogen pressure 100 kPa, total flow rate: 50 mL/min, hydrogen flow rate: 40 mL/min, air flow rate: 400 mL/min. The temperature programme: 190 ℃ for 3 min, then rose to 250 ℃ with the rate 10 ℃/min, finally held at 250 ℃ for 1 min.

General Procedure for the O-Isopropylidenation. To a suspension of the substrate (2 mmol) in dry acetone (10 mL), CAT600 (100 mg) was added. Then the mixture was stirred at 40 ℃ till the TLC (n-hexane-EtOAc 2:1) showed the completion of the reaction. The catalyst was separated by filtration, washed with acetone, dried, and reused for a consecutive run under the same reaction conditions. The filtrate was condensed to dry in vacuum, and the residue was dissolved in CH2Cl2 (10 mL) and washed with 3 × 5 mL brine. The organic layer was dried over anhydrous Na2SO4, filtered and evaporated to afford the crude product. Then the desired pure product was obtained by recrystallization from n-hexane. While, the silica gel column chromatography was used if the product existed in the liquid form.

References

  1. (a) De Belder, A. N. Adv. Carbohydrate Chem. 1965, 20, 219.
  2. (b) De Belder, A. N. Adv. Carbohydrate Chem. 1977, 34, 179.
  3. Yamanoi, T.; Oda, Y.; Matsuda, S.; Yamazaki, I.; Matsumura, K.; Katsuraya, K.; Watanabe, M.; Inazu, T. Tetrahedron 2006, 62, 10383. https://doi.org/10.1016/j.tet.2006.08.059
  4. Veeneman, G. H. In Carbohydrate Chemistry; Boons, G.-J., Ed.; Blackie Academic & Professional: London, 1998; p 141.
  5. Alam, M. A.; Vankar, Y. D. Tetrahedron Lett. 2008, 49, 5534. https://doi.org/10.1016/j.tetlet.2008.07.057
  6. Garegg, P. J. In Preparative Carbohydrate Chemistry; Hanessian, S., Ed.; Marcel Dekker: New York, 1997; p 3.
  7. Yadav, V. K.; Agrawal, D. Chem. Commun. (Cambridge) 2007, 48, 5232.
  8. Gunter, L.; Srefan, P. Carbohydrate Research. 1986, 155, 119. https://doi.org/10.1016/S0008-6215(00)90138-1
  9. Goi, A.; Bruzzese, T.; Notarianni, A. F.; Riva, M.; Ronchini, A. Arzneim.-Forsch./Drug Res. 1979, 29, 986.
  10. (a) Loiseleur, O.; Schneider, H.; Huang, G.; Machaalani, R.; Selles, P.; Crowley, P.; Hanessian, S. Organic Process Research & Development 2006, 10, 518. https://doi.org/10.1021/op0600299
  11. (b) Andras F.; Jyoti, C. Nucleosides, Nucleotides & Nucleic Acids 2003, 22, 2093. https://doi.org/10.1081/NCN-120026632
  12. (c) Pattenden, G.; Gonzalez, M. A.; Little, P. B.; Millan, D. S.; Plowright, A. T.; Tornos, J. A.; Ye, T. Org. Biomol. Chem. 2003, 1, 4173. https://doi.org/10.1039/b308305e
  13. Schmidt, O. Th. Methods Carbohydr. Chem. 1963, 2, 318.
  14. Hering, K. W.; Karaveg, K.; Moremen, K. W.; Pearson, W. H. J. Org. Chem. 2005, 70, 9892. https://doi.org/10.1021/jo0516382
  15. Singh, P. P.; Gharia, M. M.; Dasgupta, F.; Srivastava, H. C. Tetrahedron Lett. 1977, 5, 439.
  16. Lal, B.; Gidwani, R. M.; Rupp, R. H. Synthesis 1989; p 711.
  17. Schmid, C. R.; Bryant, J. D.; Dowlatzedah, M.; Phillips, J. L.; Prather, D. E.; Schautz, R. D.; Sear, N. L.; Vianco, C. S. J. Org. Chem. 1991, 56, 4056. https://doi.org/10.1021/jo00012a049
  18. Manzo, E.; Barone, G.; Parrilli, M. Synlett 2000, 887.
  19. Lin, C. C.; Jan, M. D.; Weng, S. S.; Lin, C. C.; Chen, C. T. Carbohydr. Res. 2006, 341, 1948. https://doi.org/10.1016/j.carres.2006.04.001
  20. Khan, A. T.; Khan, M. M. Carbohydr. Res. 2010, 345, 154. https://doi.org/10.1016/j.carres.2009.09.017
  21. Khan, A. T.; Khan, M. M.; Adhikary, A. Carbohydr. Res. 2011, 346, 673. https://doi.org/10.1016/j.carres.2010.12.018
  22. Khiangte, V.; Ghanashyam, B. Tetrahedron Lett. 2011, 52, 3759. https://doi.org/10.1016/j.tetlet.2011.05.050
  23. Mandal, S.; Verma, P. R.; Mukhopadhyay, B.; Gupta, P. Carbohydr. Res. 2011, 346, 2007. https://doi.org/10.1016/j.carres.2011.05.008
  24. Rauter, A. P.; Ramoa-Ribeiro, F.; Fernandes, A. C.; Figueiredo, J. A. Tetrahedron 1995, 51, 6529. https://doi.org/10.1016/0040-4020(95)00291-F
  25. Asakura, J. I.; Matsubara, Y.; Yoshihara, M. J. Carbohydr. Chem. 1996, 15, 231. https://doi.org/10.1080/07328309608005441
  26. Silvana, P.; Annalisa, G.; Daniele, D.; Mauro, D. N.; Giovanni, P. Synthesis 2006, 305.
  27. Rajput, V. K.; Mukhopadhyay, B. Tetrahedron Lett. 2006, 47, 5939. https://doi.org/10.1016/j.tetlet.2006.06.050
  28. Pierluigi, B.; Francesca, L. Chem. Rev. 2009, 109, 515. https://doi.org/10.1021/cr800404j
  29. Sharma, M. M. React. Funct. Polym. 1995, 26, 3. https://doi.org/10.1016/1381-5148(95)00029-F
  30. Christens, G. M. J. Org. Chem. 1962, 27, 1442. https://doi.org/10.1021/jo01051a507
  31. Zheng, Y. J.; Li, J.; Lu, J. J.; Jia, Y. C.; Li, B. L. Chemical Journal of Chinese Universities 2013, 34, 2738.
  32. Yong, T.; Michael F.; Wang, Z. X.; Yian, S. Organic Syntheses 2003, 80, 1 https://doi.org/10.15227/orgsyn.080.0001
  33. Yong, T.; Michael F.; Wang, Z. X.; Yian, S. Coll. 2009, 11, 177.
  34. Amber, O.; Christopher, P.; Michael, A. I.; Ian, D. B.; Gregory, A.S.; Martha, D. M.; Michael, B. S. Carbohydr. Res. 2011, 346, 1662. https://doi.org/10.1016/j.carres.2011.04.017
  35. Nadim, S. S.; Kathrin, J.; Matthias, B. Organic Letters 2007, 9, 5429. https://doi.org/10.1021/ol7021802

Cited by

  1. An Expedient Method for Kinetically Controlled Acetonide Formation from d-Fructose Induced by Ionic Liquid Catalyst Accompanied with SrCl2·6H2O vol.150, pp.9, 2014, https://doi.org/10.1007/s10562-020-03175-2
  2. Chemoenzymatic Synthesis of New Aromatic Esters of Mono- and Oligosaccharides vol.8, pp.12, 2014, https://doi.org/10.3390/pr8121638