DOI QR코드

DOI QR Code

A Prediction Model for Removal of Non-point Source Pollutant Considering Clogging Effect of Sand Filter Layers for Rainwater Recycling

빗물 재활용을 위한 모래 정화층의 폐색특성을 고려한 비점오염원 제거 예측 모델 연구

  • 안재윤 (고려대학교 건축사회환경공학부) ;
  • 이동섭 (고려대학교 건축사회환경공학부) ;
  • 한신인 ((주) 서영엔지니어링) ;
  • 정영욱 ((주) 서영엔지니어링) ;
  • 최항석 (고려대학교 건축사회환경공학부)
  • Received : 2014.03.04
  • Accepted : 2014.06.19
  • Published : 2014.06.30

Abstract

An artificial rainwater reservoir installed in urban areas for recycling rainwater is an eco-friendly facility for reducing storm water effluence. However, in order to recycle the rainwater directly, the artificial rainwater reservoir requires an auxiliary system that can remove non-point source pollutants included in the initial rainfall of urban area. Therefore, the conventional soil filtration technology is adopted to capture non-point source pollutants in an economical and efficient way in the purification system of artificial rainwater reservoirs. In order to satisfy such a demand, clogging characteristics of the sand filter layers with different grain-size distributions were studied with real non-point source pollutants. For this, a series of lab-scale chamber tests were conducted to make a prediction model for removal of non-point source pollutants, based on the clogging theory. The laboratory chamber experiments were carried out by permeating two types of artificially contaminated water through five different types of sand filter layers with different grain-size distributions. The two artificial contaminated waters were made by fine marine-clay particles and real non-point source pollutants collected from motorcar roads of Seoul, Korea. In the laboratory chamber experiments, the concentrations of the artificial contaminated water were measured in terms of TSS (Total Suspended Solids) and COD (Chemical Oxygen Demand) and compared with each other to evaluate the performance of sand filter layers. In addition, the accumulated weight of pollutant particles clogged in the sand filter layers was estimated. This paper suggests a prediction model for removal of non-point source pollutants with theoretical consideration of the physical characteristics such as the grain-size distribution and composition, and change in the hydraulic conductivity and porosity of sand filter layers. The lumped parameter ${\theta}$ related with the clogging property was estimated by comparing the accumulated weight of pollutant particles obtained from the laboratory chamber experiments and calculated from the prediction model based on the clogging theory. It is found that the lumped parameter ${\theta}$ has a significant influence on the amount of the pollutant particles clogged in the pores of sand filter layers. In conclusion, according to the clogging prediction model, a double-sand-filter layer consisting of two separate layers: the upper sand-filter layer with the effective particle size of 1.49 mm and the lower sand-filter layer with the effective particle size of 0.93 mm, is proposed as the optimum system for removing non-point source pollutants in the field-sized artificial rainwater reservoir.

인공 빗물 저류조는 도심지에 설치되어 빗물의 재활용이 가능하도록 한 친환경 우수유출 저감시설이나 지면에 내린 빗물을 직접 이용하기 위해서는 도심지의 초기강우에 포함된 고농도의 비점오염원을 정화할 수 있는 시설이 수반되어야 한다. 본 논문에서는 인공 빗물 저류조에 적용할 수 있는 비점오염원 정화시설로서 경제성과 정화효율이 우수한 토양여과시설을 채택하여 실제 비점오염물질에 대한 모래 정화층의 입도분포에 따른 폐색특성을 연구하였다. 이를 위해 일련의 실내 챔버시험을 수행하고 폐색이론에 의한 비점오염원 제거 예측 모델을 제시하였다. 우선, 실내 챔버시험은 미세입자로 구성된 점토와 서울시내 도로에서 채집된 실제 비점오염원으로 제조된 인공 오염수를 이용하여, 5종류의 다양한 입도로 구성된 모래 정화층을 대상으로 수행되었다. 실내 챔버시험에서는 모래 정화층에 유입 및 유출된 인공 오염수의 TSS(총 부유물질)와 COD(화학적 산소 요구량)를 측정하여 오염입자의 크기에 따른 모래 정화층의 정화효율을 평가하였고, 정화층 간극에 폐색되는 비점오염입자의 누적무게를 산출하였다. 다음으로, 모래 정화층의 폐색특성을 이론적으로 규명하기 위해 비점오염원 제거 예측모델을 모래 정화층의 입도와 구성에 따른 특성과 투수계수 및 간극률의 변화 조건을 고려하여 제시하였다. 실내 챔버시험과 예측 모델로부터 산정한 모래 정화층에 폐색된 입자의 누적무게를 비교하여 폐색특성 지표인 Lumped parameter ${\theta}$를 추정하였으며, ${\theta}$는 모래 정화층에 폐색되는 오염입자의 양에 큰 영향을 주는 것을 확인하였다. 모래 정화층의 폐색 예측모델로부터 현장 인공 빗물 저류조에 적합한 최적의 비점오염 제거 시스템으로 유효입경 1.49mm(상부)와 유효입경 0.93mm(하부)의 모래로 구성된 이중 정화층을 제시하였다.

Keywords

References

  1. Arya, L. M. and Dierolf, T. S. (1989), "Predicting soil moisture characteristics from particle-size distributions: An improved method to calculate pore radii from particle radii", Indirect methods for estimating the hydraulic properties of unsaturated soils, M. T. Van Geuchten and F. J. Leij eds., U.S. Salinity Laboratory, Riverside, Calif., pp.115-124.
  2. Bahgat, M., Dewedar, A., and Zayed, A. (1999), "Sand filters used for wastewater treatment: build up and distribution of micro organisms", Water Research, Vol.33, No.8, pp.1949-1955. https://doi.org/10.1016/S0043-1354(98)00290-5
  3. Caza, N., Bewtra, J. K., Biswas, N., and Taylor, K. E. (1999), "Removal of phenolic compounds from synthetic wastewater using soybean peroxidase", Water Research, Vol.33, No.13, pp.3012-3018. https://doi.org/10.1016/S0043-1354(98)00525-9
  4. Cho, K. W., Song, K. G., Cho, J. W., Kim, T. G., and Ahn, K. H. (2009), "Removal of nitrogen by a layered soil infiltration system during intermittent storm events", Chemosphere, Vol.76, pp.251-257.
  5. Choi, J. Y. and Shin, E. S. (1997), "A study on management methods for non-point pollutants source in urban area", Research Report, Korea Environment Institute.
  6. Gruesbeck, C. and Collins, R. E. (1982), "Entrainment and deposition of fine particles in porous media", Society of Petroleum Engineers Journal, December 1982, pp.847-856.
  7. Hori, T. S. F., Avilez, I. M., Inoue, L. K., and Moraes, G. (2006), "Metabolical changes induced by chronic phenol exposure in matrinxa Brycon cephalus (teleostei: characidae) juveniles", Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology, Vol.147, No.4, pp.416-423.
  8. Hsieh, C. and Davis, A. P. (2005), "Evaluation and optimization of bioretention media for treatment of urban storm water runoff", J. of Environ. Engrg, Vol.131, No.11, pp.1521-1531. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:11(1521)
  9. Ives, K. J. (1987), "Filtration of clay suspensions through sand", Clay Minerals, March 1987, Vol.22, pp.49-61. https://doi.org/10.1180/claymin.1987.022.1.05
  10. John, J. S. and Steven, G. B. (1997), "Partitioning and first flush of metals in urban roadway storm water", J. of Environ. Engrg, Vol.123, No.2, pp.134-143. https://doi.org/10.1061/(ASCE)0733-9372(1997)123:2(134)
  11. Kim, J. S., Lee, I. M., Jang, J. H., and Choi, H. (2009), "Groutability of cement-based grout with consideration of viscosity and filtration phenomenon", Int. J. Numer. Anal. Meth. Geomech, Vol.33, No.16, pp.1771-1797. https://doi.org/10.1002/nag.785
  12. Kim, J. S. (2010), "Behavioral characteristics of cement-based permeation grouting", Ph.D dissertation, Korea university, pp.27-140.
  13. Lee, I. M., Lee, S., and Cho, K. H. (2004), "Face stability assessment of slurry-shield tunnels -Concentrating on slurry clogging effect-", J. Korean Geotechnical society, Vol.20, No.6, pp.95-107.
  14. Michael E. B., Lyn B. I. Jr., Josheph F. M. Jr., and Randall J. C. (1998), "Characterization of highway runoff in austin, texas, area", J. of Environ. Engrg, Vol.124, No.2, pp.131-137. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:2(131)
  15. Ministry of Environment. (2010a), Natural management methods utilizing LID Method for non-point pollutants source.
  16. Ministry of Environment. (2010b), Standards for Waterworks Facilities, Korea Water and Wastewater Works Association, pp.372-443.
  17. Ministry of Environment. (2011), Standards for Wastewater Works Facilities, Korea Water and Wastewater Works Association, pp. 363-601.
  18. Ministry of Environment. (2013), Low Impact Development(LID) technique element for building healthy water circulation system.
  19. Pitt, R. and P. Barron. (1990), "Assessment of urban and industrial stormwater runoff toxicity and the evaluation/development of treatment for runoff toxicity abatement-phase I", U.S. EPA, Office of Research and Development, Edison, New Jersey.
  20. Rege, S. D. (1988), "Network modeling and experimental investigation of flow, dissolution, precipitation and fines migration in porous media", PhD dissertation, The University of Michigan, Ann Arbor, Mich.
  21. Rege, S. D. and Fogler, H. S. (1988), "A network model for deep bed filtration of solid particles and emulsion drops", AIChe Journal, Vol.34, No.11, pp.1761-1772. https://doi.org/10.1002/aic.690341102
  22. Reddi, L. N. and Bonala, M. V. S. (1997), "Analytical solution for fine particle accumulation in soil filters", J. of Geotechnical and Geoenvironmental Engrg, ASCE, Vol.123, No.12, pp.1143-1152. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:12(1143)
  23. Rodgers, M., Mulqueen, J., and Healy, M. G. (2004), "Surface clogging in an intermittent stratified sand filter", Soil Science Society of America Journal, Vol.68, pp.1827-1832. https://doi.org/10.2136/sssaj2004.1827
  24. Roh, S. D., Lee, D. K., and Chun, Y. K. (2004), "A study on the early-stage storm runoff treatment for the reduction of non-point pollution materials on the road", J. of the korean Society on Water Quality, Vol.20, No.5, pp.525-533.
  25. Seigrist, R. L. and Boyle, W. C. (1987), "Wastewater-induced soil clogging development", J. of Environ. Eng., Vol.113, No.3, pp. 550-566. https://doi.org/10.1061/(ASCE)0733-9372(1987)113:3(550)
  26. Torben L., Kirsten B., and Margit R. A. (1998), "First flush effects in an urban catchment area in aalborg", Wat. Sci. Tech, Vol.37, No.1, pp.251-257.
  27. U.S. EPA. (1983), "Results of the nationwide urban runoff program", Water Planing Division, PB 84-185552, Washington, D. C., December 1983.