Abstract
An artificial rainwater reservoir installed in urban areas for recycling rainwater is an eco-friendly facility for reducing storm water effluence. However, in order to recycle the rainwater directly, the artificial rainwater reservoir requires an auxiliary system that can remove non-point source pollutants included in the initial rainfall of urban area. Therefore, the conventional soil filtration technology is adopted to capture non-point source pollutants in an economical and efficient way in the purification system of artificial rainwater reservoirs. In order to satisfy such a demand, clogging characteristics of the sand filter layers with different grain-size distributions were studied with real non-point source pollutants. For this, a series of lab-scale chamber tests were conducted to make a prediction model for removal of non-point source pollutants, based on the clogging theory. The laboratory chamber experiments were carried out by permeating two types of artificially contaminated water through five different types of sand filter layers with different grain-size distributions. The two artificial contaminated waters were made by fine marine-clay particles and real non-point source pollutants collected from motorcar roads of Seoul, Korea. In the laboratory chamber experiments, the concentrations of the artificial contaminated water were measured in terms of TSS (Total Suspended Solids) and COD (Chemical Oxygen Demand) and compared with each other to evaluate the performance of sand filter layers. In addition, the accumulated weight of pollutant particles clogged in the sand filter layers was estimated. This paper suggests a prediction model for removal of non-point source pollutants with theoretical consideration of the physical characteristics such as the grain-size distribution and composition, and change in the hydraulic conductivity and porosity of sand filter layers. The lumped parameter ${\theta}$ related with the clogging property was estimated by comparing the accumulated weight of pollutant particles obtained from the laboratory chamber experiments and calculated from the prediction model based on the clogging theory. It is found that the lumped parameter ${\theta}$ has a significant influence on the amount of the pollutant particles clogged in the pores of sand filter layers. In conclusion, according to the clogging prediction model, a double-sand-filter layer consisting of two separate layers: the upper sand-filter layer with the effective particle size of 1.49 mm and the lower sand-filter layer with the effective particle size of 0.93 mm, is proposed as the optimum system for removing non-point source pollutants in the field-sized artificial rainwater reservoir.
인공 빗물 저류조는 도심지에 설치되어 빗물의 재활용이 가능하도록 한 친환경 우수유출 저감시설이나 지면에 내린 빗물을 직접 이용하기 위해서는 도심지의 초기강우에 포함된 고농도의 비점오염원을 정화할 수 있는 시설이 수반되어야 한다. 본 논문에서는 인공 빗물 저류조에 적용할 수 있는 비점오염원 정화시설로서 경제성과 정화효율이 우수한 토양여과시설을 채택하여 실제 비점오염물질에 대한 모래 정화층의 입도분포에 따른 폐색특성을 연구하였다. 이를 위해 일련의 실내 챔버시험을 수행하고 폐색이론에 의한 비점오염원 제거 예측 모델을 제시하였다. 우선, 실내 챔버시험은 미세입자로 구성된 점토와 서울시내 도로에서 채집된 실제 비점오염원으로 제조된 인공 오염수를 이용하여, 5종류의 다양한 입도로 구성된 모래 정화층을 대상으로 수행되었다. 실내 챔버시험에서는 모래 정화층에 유입 및 유출된 인공 오염수의 TSS(총 부유물질)와 COD(화학적 산소 요구량)를 측정하여 오염입자의 크기에 따른 모래 정화층의 정화효율을 평가하였고, 정화층 간극에 폐색되는 비점오염입자의 누적무게를 산출하였다. 다음으로, 모래 정화층의 폐색특성을 이론적으로 규명하기 위해 비점오염원 제거 예측모델을 모래 정화층의 입도와 구성에 따른 특성과 투수계수 및 간극률의 변화 조건을 고려하여 제시하였다. 실내 챔버시험과 예측 모델로부터 산정한 모래 정화층에 폐색된 입자의 누적무게를 비교하여 폐색특성 지표인 Lumped parameter ${\theta}$를 추정하였으며, ${\theta}$는 모래 정화층에 폐색되는 오염입자의 양에 큰 영향을 주는 것을 확인하였다. 모래 정화층의 폐색 예측모델로부터 현장 인공 빗물 저류조에 적합한 최적의 비점오염 제거 시스템으로 유효입경 1.49mm(상부)와 유효입경 0.93mm(하부)의 모래로 구성된 이중 정화층을 제시하였다.