DOI QR코드

DOI QR Code

Antioxidant Activities of Pleurotus cornucopiae Extracts by Extraction Conditions

추출조건에 따른 노랑느타리버섯 추출물의 항산화 활성

  • Received : 2014.02.03
  • Accepted : 2014.03.03
  • Published : 2014.06.30

Abstract

Physiological activities of extracts form Pleurotus cornucopiae were examined. DPPH radical scavenging activity of water extract was 70.22 percent at 4 mg/mL, which was the highest among all extracts. Total polyphenol content of water extract was 26.34 mg/g, which was the highest value for all extraction conditions. Superoxide anion radical scavenging activities ranged from 50.17 to 80.56 percent at 1, 2, and 4 mg/mL, which were higher than the ascorbic acid activity (56.19% at 10 mg/mL) (P<0.05). ACE inhibitory activities were higher in ethanolic extracts than in water extracts. Nitrite-scavenging abilities under acidic conditions (pH 1.2 and pH 3.0) were the most effective among all the extracts. These results will be useful for understanding the physiological activities of Pleurotus cornucopiae.

노랑느타리버섯을 물, 30%, 60% 및 90% 에탄올로 추출용매를 달리하여 추출한 추출물을 각각 농도를 달리하여 항산화 및 생리활성을 측정하였다. 그 결과 DPPH radical 소거능은 각 추출물 농도가 1 mg/mL일 때 모든 추출조건에서 24.34~31.15%의 다소 낮은 활성을 보였다. 총 폴리페놀 함량은 에탄올 추출물에 비해 물 추출물이 더 많은 페놀을 함유하고 있었고 이때 물 추출물이 26.34 mg/g으로 가장 많았다(P<0.05). SOD 유사활성 측정 결과 추출조건에 따른 경향은 보이지 않았으나, 표준물질인 ascorbic acid와 비교하였을 때 노랑느타리버섯의 활성이 2배 이상 높은 것으로 나타났다. ACE 저해 활성의 경우 에탄올 추출물의 활성이 높은 경향을 보였으나 모든 추출물이 35.99~57.42%로 비교적 낮은 활성을 보였다. 노랑느타리버섯의 아질산염 소거능 측정에서는 pH 3.0에서 높게 나타났고, 추출조건에 따라 60% 에탄올 추출물의 소거능이 가장 우수하였다. 이와 같이 노랑느타리의 다양한 항산화 및 생리활성을 기초자료로 한 천연물 유래의 기능성 소재 발굴 및 연구 활용이 가능할 것으로 사료된다.

Keywords

References

  1. Kim HS, Ha HC, Kim TS. 2003. Research and prospects in new functional mushroom-Tremella fuciformis, Grofora frondosa, and Hypsizigus marmoreus-. Food Sci Ind 36(4):42-46.
  2. Yang HC, Song CH, Kweon MH. 1996. Mycelial new material, food functional technology. Hanlimwon, Seoul, Korea. p 187-189.
  3. Jo EK. 2012. Physiological and antioxidant activities of subcritical water extracts from gold oyster mushroom (Pleurotus cornucopiae Rolland var. citrinopileatus). MS Thesis. Kyungnam University, Changwon, Korea. p 38-39.
  4. Hossain S, Hashimoto M, Choudhury EK, Alam N, Hussain S, Hasan M, Choudhury SK, Mahmud I. 2003. Dietary mushroom (Pleurotus ostreatus) ameliorates atherogenic lipid in hypercholesterolaemic rats. Clin Exp Pharmacol Physiol 30: 470-475. https://doi.org/10.1046/j.1440-1681.2003.03857.x
  5. Barrosa L, Baptistaa P, Correiaa DM, Casalb S, Oliveirab B, Ferreira ICFR. 2007. Fatty acid and sugar compositions, and nutritional value of five wild edible mushrooms from Northeast Portugal. Food Chem 105: 140-145. https://doi.org/10.1016/j.foodchem.2007.03.052
  6. Jung IC, Park S, Park KS, Ha HC, Kim SH, Kwon YI, Lee JS. 1996. Antioxidative effect of fruit body and mycelial extracts of Pleurotus ostreatus. Korean J Food Sci Technol 28: 464-469.
  7. Kim MS, Kim GH. 2010. Contents of nucleic acids (nucleosides and mono-nuleotides) in extracts of Pleurotus ostreatus, Agaricus bisporus and Flammulina velutipes. Korean J Food & Nutr 23: 376-380.
  8. Kim HJ, Bae JT, Lee JW, HwangBo MH, Im HK, Lee IS. 2005. Antioxidant activity and inhibitive effects on human leukemia cells of edible mushrooms extracts. Korean J Food Preserv 12: 80-85.
  9. Qi Y, Zhao X, Lim YI, Park KY. 2013. Antioxidant and anticancer effects of edible and medicinal mushrooms. J Korean Soc Food Sci Nutr 42: 655-662. https://doi.org/10.3746/jkfn.2013.42.5.655
  10. Yoo BH. 2011. Production of ${\beta}$-glucan using mixed culture of mushroom mycelium and Trichoderma koningii. MS Thesis. Inje University, Gimhae, Korea. p 4-5.
  11. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1120. https://doi.org/10.1038/1811199a0
  12. Folin O, Denis W. 1912. On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-243.
  13. Marklund S, Marklund G. 1974. Involvement of superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European J Biochem 47: 468-474.
  14. Cushman DW, Chung HS. 1971. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol 20: 1637-1648. https://doi.org/10.1016/0006-2952(71)90292-9
  15. Gray JI, Dugan Jr LR. 1975. Inhibition of N-nitrosamine formation in model food systems. J Food Sci 40: 981-984. https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  16. Cho ML, Lee DJ, You SG. 2012. Radical scavenging activity of ethanol extracts and solvent partitioned fractions from various red seaweeds. Ocean and Polar Research 34: 445-451. https://doi.org/10.4217/OPR.2012.34.4.445
  17. Torel J, Cillard J, Cillard P. 1986. Antioxidant activity of flavoniods and reactivity with peroxy radical. Phytochemistry 25: 383-385. https://doi.org/10.1016/S0031-9422(00)85485-0
  18. Kang HW. 2012. Antioxidant and anti-inflammatory effect of extracts from Flammulina velutipes (Curis) singer. J Korean Soc Food Sci Nutr 41: 1072-1078. https://doi.org/10.3746/jkfn.2012.41.8.1072
  19. Kim HJ, Bae JT, Lee JW, Hwangbo MH, Im HG, Lee IS. 2005. Antioxidant activity and inhibitive effects on human leukemia cells of edible mushrooms extracts. Korean J Food Preserv 12: 80-85.
  20. Lee YS, Joo EY, Kim NW. 2006. Polyphenol contents and antioxidant activity of Lepista nuda. J Korean Soc Food Sci Nutr 35: 1309-1314. https://doi.org/10.3746/jkfn.2006.35.10.1309
  21. Qi Y, Zhao X, Lim YL, Park KY. 2013. Antioxidant and anticancer effects of edible and medicinal mushrooms. J Korean Soc Food Sci Nutr 42: 655-662. https://doi.org/10.3746/jkfn.2013.42.5.655
  22. Wang SY, Chang HN, Lin KT, Lo CP, Yang NS, Shyur LF. 2003. Antioxidant properties and phytochemical characteristics of extracts from Lactuca indica. J Agric Food Chem 26: 1506-1512.
  23. Ha JH, Jeong MH, Seo YC, Yong CW, Kim JS, Kim HH, Ahn JH, Lee HY. 2010. Enhancement of antioxidant activities of bark of Berberis koreana Palibin by lactic acid fermentation. Korean J Medicinal Crop Sci 18: 421-428.
  24. Kim DH, Park SR, Debnath T, Hasnat MA, Mehnaz P, Lim BO. 2013. Evaluation of the antioxidant activity and anti-inflammatory effect of Hericium erinaceus water extracts. Korean J Medicinal Crop Sci 21: 112-117. https://doi.org/10.7783/KJMCS.2013.21.2.112
  25. Cushman DW, Ondetti MA. 1980. Inhibitors of angiotensinconverting enzyme for treatment of hypertension. Biochem Pharmacol 29: 1871-1877. https://doi.org/10.1016/0006-2952(80)90096-9
  26. Song JH, Lee HS, Hwang JK, Han JW, Ro JG, Keum DH, Park KM. 2003. Physiological activity of Sarcodon aspratus extracts. Korean J Food Sci Ani Resour 23: 172-179.
  27. Song JH, Lee HS, Hwang JK, Chung TY, Hong SR, Park KM. 2003. Physiological activities of Phellinus ribis extracts. Korean J Food Sci Technol 35: 690-695.
  28. Park WM, Kim GH, Hyeon JW. 1995. New synthetic medium for growth of mycelium of Pleurotus species. Korean J Mycol 23: 275-283.
  29. Leaf CD, Vecchio AJ, Roe DA, Hotchkiss JH. 1987. Influence of ascorbic acid dose on N-nitrosoproline formation in humans. Carcinogenesis 8: 791-795. https://doi.org/10.1093/carcin/8.6.791
  30. Kwon SC. 2011. Biological activities of ethanol extracts from Hericium erinaceus mycelium on Angelica keiskei and Angelica keiskei pomace. J Korean Soc Food Sci Nutr 40:1648-1653. https://doi.org/10.3746/jkfn.2011.40.12.1648

Cited by

  1. Nutritional contents and physiological activity of Pleurotus eryngii by extraction solvents vol.13, pp.4, 2015, https://doi.org/10.14480/JM.2015.13.4.282
  2. 추출용매에 따른 이슬송이버섯(Lentinula edodes GNA01) 추출물의 항산화 활성 vol.30, pp.1, 2017, https://doi.org/10.9799/ksfan.2017.30.1.051
  3. 새송이버섯, 팽이버섯 열수추출물의 항산화 및 항암 활성 vol.31, pp.6, 2018, https://doi.org/10.9799/ksfan.2018.31.6.911
  4. 한국 및 중국산 약용버섯류의 추출용매에 따른 생리활성 성분 비교 vol.17, pp.1, 2019, https://doi.org/10.14480/jm.2019.17.1.34
  5. 국내 야생수집 버섯류 추출물의 생리활성 분석 vol.17, pp.2, 2014, https://doi.org/10.14480/jm.2019.17.2.70
  6. 한국 및 중국산 목이 및 흰목이의 추출용매에 따른 생리활성 성분 비교 vol.17, pp.2, 2014, https://doi.org/10.14480/jm.2019.17.2.78
  7. 한입버섯의 추출 용매별 항산화 및 항염증 활성 vol.17, pp.3, 2019, https://doi.org/10.14480/jm.2019.17.3.136
  8. 국내 야생버섯의 항산화 활성 및 베타글루칸 함량 분석 vol.17, pp.3, 2019, https://doi.org/10.14480/jm.2019.17.3.144
  9. 국내 자생 야생버섯류 추출물의 생리활성 연구 vol.18, pp.2, 2020, https://doi.org/10.14480/jm.2020.18.2.151
  10. 국내 균근성 버섯류 추출물의 항산화능 및 영양성분 비교 vol.18, pp.2, 2020, https://doi.org/10.14480/jm.2020.18.2.164
  11. 영지 균주별 생육특성, 생리활성, 영양성분 및 당 성분 함량 비교 vol.18, pp.3, 2014, https://doi.org/10.14480/jm.2020.18.3.221
  12. 반응표면분석법을 이용한 흰목이버섯의 기능성 성분 추출 조건 최적화 vol.18, pp.4, 2014, https://doi.org/10.14480/jm.2020.18.4.372
  13. 주요 식용버섯 가공원료의 상온 및 저온 저장에 따른 항산화 활성 변화 vol.19, pp.1, 2014, https://doi.org/10.14480/jm.2021.19.1.14
  14. 풀버섯 균주별 항산화 활성, 베타글루칸 및 영양성분 함량 분석 vol.19, pp.1, 2021, https://doi.org/10.14480/jm.2021.19.1.56