DOI QR코드

DOI QR Code

Spatial and Temporal Variation of Dissolved Inorganic Radiocarbon in the East Sea

동해 용존무기탄소 중 방사성탄소의 분지별 비교 및 시간에 따른 변화

  • Sim, Bo-Ram (Oceanographic Measurement & Instrument Calibration Service Center, KIOST) ;
  • Kang, Dong-Jin (Oceanographic Measurement & Instrument Calibration Service Center, KIOST) ;
  • Park, Young Gyu (Ocean Circulation and Climate Research, KIOST) ;
  • Kim, Kyung-Ryul (Division of Liberal Arts and Sciences, GIST College, GIST)
  • 심보람 (한국해양과학기술원 기기검교정.분석센터) ;
  • 강동진 (한국해양과학기술원 기기검교정.분석센터) ;
  • 박영규 (한국해양과학기술원 해양순환기후연구부) ;
  • 김경렬 (광주과학기술원 GIST 대학 기초교육학부)
  • Received : 2014.05.13
  • Accepted : 2014.06.03
  • Published : 2014.06.30

Abstract

This study examined the spatial and temporal variation of dissolved inorganic radiocarbon in the East Sea. Five vertical profiles of radiocarbon values were obtained from samples collected in 1999 in three basins (Japan Basin, Ulleung Basin, Yamato Basin) of the East Sea. Radiocarbon values decreased from 63- 85‰ at the surface to about -50‰ with increasing depth (up to 2,000 m) and were nearly constant in the layer deeper than 2,000 m in all basins. Radiocarbon values did not show significant basin-to-basin differences in the surface and the bottom layers. In the intermediate layer (200-2,000 m), however, they decreased in the order of Japan Basin > Ulleung Basin > Yamato Basin, which is consistent with the suggested circulation pattern in the intermediate layer of the East Sea. Radiocarbon was found to have decreased at ~2%/year in the surface water of the East Sea. In contrast, in the interior of the East Sea, radiocarbon values have increased with time in all three basins. In the Central Water, the annual increase rate was about 3.3‰, which is faster than the rates in the Deep and Bottom Waters. The radiocarbon in the Deep and Bottom Waters had increased until mid-1990s, after which time it has been almost constant.

이 연구에서는 동해의 해수 중 방사성탄소의 분지별 비교 및 시간에 따른 변화를 이해하고자 하였다. 1999년 동해의 일본분지, 울릉분지, 야마토분지 3개 분지에서 총 5개의 정점에서 채취한 시료로부터 방사성탄소를 분석하였다. 동해의 방사성탄소는 일반적인 대양에서의 분포와 유사하게 표층에서 2000 m 수심까지 가파르게 감소하는 양상을 보이며, 2000 m 보다 깊은 수심에서는 일정한 값을 보였다. 분지별로 방사성탄소의 수직분포를 비교해 보면, 3개의 분지의 표층(<200 m)에서 방사성탄소 값은 63~85‰ 이내로 유사하였으나 200~2000 m의 중층수에서는 분지별로 최대 60‰까지 차이가 나타났다. 중층수의 방사성탄소는 일본분지, 울릉분지, 야마토분지 순으로 높은 값이 나타나는데, 이는 중층수 순환의 형태와 그 분포가 일치한다. 2000 m 보다 깊은 수심의 저층수에서는 방사성탄소가 분지별로 뚜렷한 차이 없이 모든 분지에서 -80~-60‰ 내의 값을 보인다. 동해 표층수에서는 시간에 따라 매년 약 2‰씩 ${\Delta}^{14}C$ 값이 감소하였다. 반면, 동해 심층에서의 방사성탄소는 세개의 분지 모두 시간에 따라 증가하고 있다. 동해 중앙수의 방사성탄소는 매년 약 3.3‰ 증가하고 있는데, 이는 심층수나 저층수보다 시간에 따라 빠르게 증가한다. 심층수와 저층수에서는 방사성탄소가 1990년대 중반까지 증가하다가 1995년 이후로는 거의 증가하지 않고 일정한 값을 보인다. 심층수와 저층수에서의 ${\Delta}^{14}C$ 값의 시간에 따른 변화는 동해의 심층수 형성의 시간적 변화와 연관지어 해석되어야 할 것이다. 향후 동해 해수순환의 변화를 이해하기 위하여 방사성탄소 연구가 지속되어야 할 것이다.

Keywords

References

  1. 황점식 (2012) 방사성탄소를 이용한 해양 유기탄소 순환 연구 동향. 한국해양학회지 바다 17(3):189-201(Hwang JS (2012) Radiocarbon for studies of organic matter cycling in the Ocean. J Korean Soc Oceanogr 17(3): 189-201 (in Korean)) https://doi.org/10.7850/jkso.2012.17.3.189
  2. Amante C, Eakins BW (2009) ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24, 19 p
  3. Aramaki T, Senjyu T, Togawa O, Otosaka S, Suzuki T, Kitamaru T, Amano H, Volkov YN (2007) Circulation in the Northern Japan sea studied chiefly with radiocarbon. Radiocarbon 49(2):915-924 https://doi.org/10.1017/S0033822200042788
  4. Aramaki T, Tanaka SS, Kushibashi S, Kim YI, Kim CJ, Hong GH, Senjyu T (2013) Spatial distribution of radiocarbon in the southwestern Japan/East Sea immediately after bottom water renewal. Radiocarbon 55:1675-1682 https://doi.org/10.1017/S0033822200048591
  5. Chen CTA, Wang SL, Bychkov AS (1995) Carbonate chemistry of the Sea of Japan. J Geophys Res 100:13737-13745 https://doi.org/10.1029/95JC00939
  6. Chen CTA, Bychkov AS, Wang SL, Pavlova GY (1999) An anoxic Sea of Japan by the Year 2200? Mar Chem 67:249-265 https://doi.org/10.1016/S0304-4203(99)00074-2
  7. Dickson A, Sabine C, Christina J (2007) Guide to best Practices for Ocean $CO_2$ Measurements. PICES special publication 3. Sidney, BC V8L 4B2 Canada, 191 p
  8. Gamo T, Horibe Y (1983) Abyssal Circulation in the Japan Sea. J Oceanogr Soc Japan 39:220-230 https://doi.org/10.1007/BF02070392
  9. Guilderson TP (2012) Gas-Hybrid Source 14C-AMS: Application to terrestrial ecosystem, biological, and environmental research. Lawrence Livermore National Laboratory LLNL-TR-568336, 34 p
  10. Kang DJ, Kim JY, Lee TS, Kim KR (2004a) Will the East/ Japan Sea become an anoxic sea in the next century? Mar Chem 91:77-84 https://doi.org/10.1016/j.marchem.2004.03.020
  11. Kang DJ, Kim K, Kim KR (2004b) The past, present and future of the East/Japan sea in change: a simple movingboundary box model approach. Progr Oceanogr 61:175-191 https://doi.org/10.1016/j.pocean.2004.06.006
  12. Kang DJ, Park SY, Kim YG, Kim K, Kim KR (2003) A moving-boundary box model (MBBM) for oceans in change: An application to the East/Japan Sea. Geophys Res Lett 30(6):1299. doi:10.1029/2002GL016486
  13. Key RM (2001) Ocean Process Tracers: Radiocarbon. In: Steele J, Thorpe S, Turekian K (eds) Encyclopedia of Ocean Sciences. London Academic Press, Ltd., 35 p
  14. Kim K, Kim KR, Min DH, Volkov Y, Yoon JH, Takematsu M (2001) Warming and structural changes in the East (Japan) Sea: A clue to future changes in global oceans? Geophys Res Lett 28(17):3293-3296 https://doi.org/10.1029/2001GL013078
  15. Kim K, Kim KR, Chung JY, Choi BH, Byun SK, Hong GH, Takematsu M, Yoon JH, Volkov Y, Danchenkov M (1996) New findings from CREAMS observations: Water masses and eddies in the East Sea. J Korean Soc Oceanogr 31:155-163 (in Korean)
  16. Kim KR, Kim GB, Kim K (2002) A sudden bottom-water formation during the severe winter 2000-2001: The case of the East/Japan Sea. Geophys Res Lett 29(8):1234. doi:10.1029/2001GL014498
  17. Kim KR, Kim K (1996) What is happening in the East Sea (Japan Sea)?: Recent chemical observation during CREAMS 93-96. J Korean Soc Oceanogr 31:164-172 (in Korean)
  18. Kim KR, Kim K, Kang DJ, Park SY, Park MK, Kim YG, Min HS, Min D (1999) The East Sea (Japan Sea) in change: A story of dissolved oxygen. Mar Tech Soc J 33:15-22
  19. Kumamoto Y, Aramaki T, Watanabe S, Yoneda M, Shobata Y, Togawa O, Morita M, Shitashima K (2008) Temporal and spatial variations of radiocarbon on Japan Sea bottom water. J Oceanogr 64:429-441 https://doi.org/10.1007/s10872-008-0036-y
  20. Kumamoto Y, Yoneda M, Shibata Y, Kume H, Tanaka A, Uehiro T, Morita M, Shitashima K (1998) Direct observation of the rapid turnover of the Japan Sea bottom water by means of AMS radiocarbon measurement. Geophys Res Lett 25(5):651-654 https://doi.org/10.1029/98GL00359
  21. Levin I, Hesshaimer V (2000) Radiocarbon-A unique tracer of global carbon cycle dynamics. Radiocarbon 42(1):69-80 https://doi.org/10.1017/S0033822200053066
  22. McNichol AP, Jones GA (1992) Measuring $^{14}C$ in seawater $\Sigma$ $CO_2$ by Accelerator Mass Spectrometry. WHP Operations and Methods, 15 p
  23. Senjyu T, Aramaki T, Otosaka S, Togawa O, Danchenkov M, Karasev E (2002) Renewal of the bottom water after the winter 2000-2001 may spin-up the thermohaline circulation in the Japan Sea. Geophys Res Lett 29(7): 1149. doi:10.1029/2001GL014093
  24. Senjyu T, Shin HR, Yoon JH, Nagano Z, An HS, Byun SK, Lee CK (2005) Deep flow field in the Japan/East Sea as deduced from direct current measurements. Deep-Sea Res Pt II 52(11-13):1726-1741 https://doi.org/10.1016/j.dsr2.2003.10.013
  25. Stuiver M, Polach HA (1977) Discussion reporting of $^{14}C$ data. Radiocarbon 19(3):355-363 https://doi.org/10.1017/S0033822200003672
  26. Tsunogai S, Kawada K, Watanabe S, Aramaki T (2003) CFCs indicating renewal of the Japan Sea Deep Water in winter 2000-2001. J Oceanogr 59:685-693 https://doi.org/10.1023/B:JOCE.0000009597.33460.d7
  27. Watanabe S, Nakajima M, Tsunogai S (1989) Carbon dioxide exchange rate in the rate in the Japan Sea estimated from radiocarbon. Annual Meeting of Geochem Soc Japan, Tokyo, 3-5 Oct. 1989 (in Japanese)