DOI QR코드

DOI QR Code

Cross-Correlation Analysis between GOSAT and CO2 Concentration Observed by the KGAWC Station

GOSAT과 안면도 지상 관측소에서 측정된 이산화탄소의 상관성 분석

  • Choi, Jin Ho (Dept. of Spatial Information, Kyungpook National University) ;
  • Joo, Seung Min (Dept. of Spatial Information, Kyungpook National University) ;
  • Um, Jung Sup (Dept. of Geography, Kyungpook National University)
  • Received : 2014.04.01
  • Accepted : 2014.06.03
  • Published : 2014.06.30

Abstract

GOSAT satellite $CO_2$ signal in years (June, 2009-December 2012) were compared with ground-based measurement at Anmyeon-do Korea Global Atmosphere Watch Center (KGAWC), located on the west coast of the Korean Peninsula. The result reveals that GOSAT signature is closely associated with ground-based measurement($R^2=0.49$). Strong correlation occurred between summer and fall ($R^2=0.62$) while weak relationship between satellite and ground-based measurement were identified in winter and spring ($R^2=0.37$). Average $CO_2$ concentration of GOSAT were 6.31 ppm lower than the corresponding values obtained from ground-based measurements on the same date. It is anticipated that this research output could be used as a valuable reference in introducing GOSAT to confirm data quality assurance for area-wide carbon monitoring process in relation to Anmyeon-do KGAWC $CO_2$ Concentration data.

GOSAT 위성 신호와 한반도 서해안에 위치한 안면도 지상관측소 이산화탄소 관측값을 비교평가하는 연구를 수행하였다. GOSAT과 안면도 지상관측소의 관측값의 상관관계를 보여주는 $R^2$ 값은 0.49로 비교적 강한 양의 상관관계가 나타나고 있었다. 계절별 상관 분석 결과에서 여름과 가을($R^2=0.62$)에 강한 양의 상관계가가 나타나는 반면 봄과 겨울($R^2=0.37$)에는 보통의 양의 상관관계가 나타나 여름과 겨울이 좀 더 계절적으로 높은 상관계수를 보이고 있었다. 분석 기간(2009.6-2012.12) 중 GOSAT 이산화탄소 관측값이 지상관측소에 비해 다소 낮게 나타나고 있어 (평균 -6.31ppm), GOSAT 위성신호가 이산화탄소 농도를 지상관측소 측정 결과에 비해 과소평가하고 있음이 확인되었다. 이러한 분석 결과는 안면도와 제주 고산에 한정되어 있는 한반도의 이산화탄소 지상관측소의 시공간적 한계성을 극복할 수 있는 대안으로 GOSAT 위성의 활용가능성을 판단할 수 있는 근거가 될 수 있을 것이다.

Keywords

References

  1. Buchwitz, M., Beek, R. D., Burrows, J. P., Bovensmann, H., Warneke, T., Notholt, J., and Schulz, A., 2005, Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: initial comparison with chemistry and transport models. Atmospheric Chemistry and Physics, Vol.5, No.4, pp. 941-962. https://doi.org/10.5194/acp-5-941-2005
  2. Choi, J and Um, J., 2012, Comparative Evaluation for seasonal $CO_2$ flows tracked by GOSAT in Northeast Asia, Korea Spatial Information Society, Vol.20, No.5, pp. 1-13. https://doi.org/10.12672/ksis.2012.20.5.001
  3. Choi, J and Um, J., 2-13. Analysis of $CO_2$ Distribution Properties Using GOSAT : a Case Study of North-East Asia, The korean society for geospatial information system Vol.21, No.2, pp. 83-90. https://doi.org/10.7319/kogsis.2013.21.2.085
  4. Gavrilov, N. M., Makarova, M. V., Poberovskii, A. V. and Timofeyev, Y. M., 2013, Comparisons of CH 4 satellite GOSAT and ground-based FTIR measurements near Saint-Petersburg ($59.9^{\circ}$N, $29.8^{\circ}$E). Atmospheric Measurement Techniques Discussions, 6(4). pp. 7041-7062.
  5. GOSAT Project Office, 2010, Summary of the GOSAT Level 2 data product validation activity, pp. 1-28.
  6. Hong, H., Lee, H., Jung, Y., Kim, W. and Kim, J., 2013, Comparioson of carbon dioxdide volume mixing ratios measured by GOSAT TANSO-FTS and TCCON over two sites in East Asia, Korea Journal of Remote Sensing, Vol.29, No.6, pp. 657-662. https://doi.org/10.7780/kjrs.2013.29.6.8
  7. Kuze, A., Suto, H., Nakajima, M., and Hamazaki, T., 2009, Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Applied optics, Vol.48, No.35, pp. 6716-6733. https://doi.org/10.1364/AO.48.006716
  8. Liu, Y., Wang, X., Guo, M., and Tani, H., 2012, Mapping the FTS SWIR L2 product of $XCO_2$ and XCH4 data from the GOSAT by the Kriging method-a case study in East Asia. International Journal of Remote Sensing, Vol.33, No.10, pp. 3004-3025. https://doi.org/10.1080/01431161.2011.624132
  9. Parker, R., Boesch, H., Cogan, A., Fraser, A., Feng, L., Palmer, P. I. and Wunch, D., 2011, Methane observations from the Greenhouse Gases Observing SATellite: Comparison to ground-based TCCON data and model calculations. Geophysical Research Letters, Vol.38, No.15, pp.807-812.
  10. Qu, Y., Zhang, C., Wang, D., Tian, P., Bai, W., Zhang, X., and Wu, Q., 2013, Comparison of atmospheric $CO_2$ observed by GOSAT and two ground stations in China. International Journal of Remote Sensing, Vol.34, No.11, pp. 3938-3946. https://doi.org/10.1080/01431161.2013.768362
  11. Shim, C., Lee, J., and Wang, Y., 2013, Effect of continental sources and sinks on the seasonal and latitudinal gradient of atmospheric carbon dioxide over East Asia. Atmospheric Environment, Vol.79, pp. 853-860. https://doi.org/10.1016/j.atmosenv.2013.07.055
  12. Yoshida, Y., Ota, Y., Eguchi, N., Kikuchi, N., Nobuta, K., Tran, H., and Yokota, T., 2011, Retrieval algorithm for $CO_2$ and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite. Atmospheric Measurement Techniques, Vol.4, No.4, pp. 717-734. https://doi.org/10.5194/amt-4-717-2011
  13. Yokota, T., Yoshida, Y., Eguchi, N., Ota, Y., Tanaka, T., Watanabe, H., and Maksyutov, S. 2009, Global concentrations of $CO_2$ and CH4 retrieved from GOSAT: First preliminary results. Sola, No.5, 160-163. https://doi.org/10.2151/sola.2009-041
  14. Zhang, C. M, 2010, Interfernece imaging spectrometer technology, Science press, pp.1-200.

Cited by

  1. Evaluating co-relationship between OCO-2 XCO2 and in situ CO2 measured with portable equipment in Seoul vol.24, pp.5, 2016, https://doi.org/10.1007/s41324-016-0053-7