DOI QR코드

DOI QR Code

Direct Conversion for the Production of 5-HMF from Cellulose over Immobilized Acidic Ionic Liquid Catalyst with Metal Chloride

고정화 산성 이온성 액체 촉매와 금속염화물 촉매를 이용한 셀룰로우스의 5-HMF로의 직접 전환 연구

  • Park, Yong Beom (Department of Chemical Engineering, Pukyong National University) ;
  • Choi, Jae Hyung (Department of Chemical Engineering, Pukyong National University) ;
  • Lim, Han-Kwon (Department of Chemical Systematic Engineering, Catholic University of Daegu) ;
  • Woo, Hee-Chul (Department of Chemical Engineering, Pukyong National University)
  • 박용범 (부경대학교 화학공학과) ;
  • 최재형 (부경대학교 화학공학과) ;
  • 임한권 (대구가톨릭대학교 화학시스템공학과) ;
  • 우희철 (부경대학교 화학공학과)
  • Received : 2014.06.19
  • Accepted : 2014.06.20
  • Published : 2014.06.30

Abstract

Various metal chlorides and acid catalysts in ionic liquid solvent were investigated to directly convert cellulose into 5-hydroxymethylfurfural (5-HMF). Metal chlorides containing Sn(II), Zn(II), Al(III), Fe(III), Cu(II), and Cr(III) were used and acidic ionic liquid immobilized on silica gel as an acid catalyst and commercial acid catalysts (sulfuric acid, chloric acid, Amberlyst-15,DOWEX50x8) were used for comparison studies. The acid strength and amount of acid catalysts were probed with Hammett indicator. The selectivity and yield of 5-HMF were determined with reaction temperature, reaction time and catalyst ratio. A catalyst containing $CrCl_3-6H_2O$ and $SiO_2-[ASBI]HSO_4$ showed the highest selectivity and it was found that this catalyst had higher activity than commercial solid acid catalysts such as Amberlyst-15 and DOWEX50x8. The selectivity of 5-HMF appeared to be mainly dependent on the acid strength and catalyst ratio, it was found that levulinic acid was produced from 5-HMF by rehydration.

셀룰로우스(cellulose)를 5-히드록시메틸푸르푸랄(5-hydroxymethylfurfural, 5-HMF)로 직접 전환하기 위해 이온성 액체 용매하에서 다양한 금속염화물과 산 촉매를 비교 연구하였다. 사용한 금속염화물은 Sn(II), Zn(II), Al(III), Fe(III), Cu(II), Cr(III)를 포함한 염화물을 비교하였으며 산 촉매는 산성 이온성 액체를 고정화하여 사용하였다. 비교를 위하여 $H_2SO_4$, HCl, Amberlyst-15와 DOWEX50x8을 사용하였다. 제조한 촉매의 산도와 산 밀도 특성은 Hammett Indicator 지시약을 통하여 분석하였다. 5-HMF의 선택도 및 수율은 반응온도, 반응시간과 촉매 비를 통하여 확인하였다. 사용한 촉매들 중에서 5-HMF의 선택도는 $CrCl_3-6H_2O$$SiO_2-[ASBI]HSO_4$를 사용하였을 때에 가장 높게 나타났으며, 상용화 고체 산인 Amberlyst-15와 DOWEX50x8에 비하여 활성이 높다는 것을 확인할 수 있었다. 5-HMF의 선택도는 산 촉매의 산도와 반응에 사용된 촉매비에 영향이 있음을 확인할 수 있었으며, 반응 중 재수화 반응이 일어나 레불린산(levulinic acid)이 생성된다는 것을 확인하였다.

Keywords

References

  1. Hubber, G. W., Ghheda, J. N., Barrett, C. J., and Dumesic, J. A., "Production of Liquid Alkanes by Aqueous-Phase Processing of Biomass-Derived Carbohydrates," Science, 308, 1446-1450 (2005). https://doi.org/10.1126/science.1111166
  2. Petrus, L., and Noordermeer, M. A., "Biomass to Biofuels, A Chemical Perspective," Green Chem., 8, 861-867 (2006). https://doi.org/10.1039/b605036k
  3. Zakrzewska, M. E., Ewa B. E., and Bogel R., "Ionic Liquid-Mediated Formation of 5-Hydroxymethylfurfural-A Promising Biomass-Derived Building Blok," Chem. Rev., 111, 397-417 (2011). https://doi.org/10.1021/cr100171a
  4. Zartman, W. H., and Adkins, H., "Hydrogenolysis of Sugars," J. Am. Chem. Soc., 55, 4559-4563 (1993).
  5. Qi, X., Watanabe, M., Aida, T. M., and Smith, R. L., "Catalytic Conversion of Fructose and Glucose into 5-Hydroxymethylfurfural in Hot Compressed Water by Microwave Heating," Catal. Commun., 9, 2244-2249 (2008). https://doi.org/10.1016/j.catcom.2008.04.025
  6. Rinaldi, R., and Schijth, F., "Design of Solid Catalysts for the Conversion of Biomass," Energy Environ. Sci., 2, 192-196 (2009).
  7. Olusola O. J., Sudip, M., Lamidi, A. U., Kolawole, O. A., Olayinka, O. A., Tolu, O. S., Satanand, S., and Rashmi, C., "Towards the Conversion of Carbohydrate Biomass Feedstocks to Biofuels via Hydroxymethylfurfural," Energy Environ. Sci., 3, 1833-1850 (2010). https://doi.org/10.1039/b925869h
  8. Akien, G. R., Qi, L., and Horvath, I. T., "Molecular Mapping of the Acid Catalysed Dehydration of Fructose," Chem. Commun., 48, 5850-5852 (2012). https://doi.org/10.1039/c2cc31689g
  9. Swatloski, R. P., Spear, S. K., Holbrey, J. D., and Rogers, R. D., "Dissolution of Cellulose with Ionic Liquids," J. Am. Chem. Soc., 12, 4974-4975 (2002).
  10. Li, C., Zhang, Z., and Zhao, Z. K., "Direct Conversion of Glucose and Cellulose to 5-Hydroxymethylfurfural in Ionic Liquid under Microwave Irradiation," Tetrahedron Lett., 50, 5403-5405 (2009). https://doi.org/10.1016/j.tetlet.2009.07.053
  11. Su, Y., Brown, H. M., Huang, X., Zhou, X., Amonette, J. E., and Zhang, Z. C., "Single-step Conversion of Cellulose to 5-Hydroxymethylfurfural (HMF), A versatile Platform Chemical," Appl. Catal.. A: General, 361, 117-122 (2009). https://doi.org/10.1016/j.apcata.2009.04.002
  12. Kim, B. R., Jeong, J. W., Lee, D. H., Kim, S. Y., Yoon, H. J., Lee, Y. S., and Cho, J. K., "Direct Transformation of Cellulose into 5-Hydroxymethyl-2-furfural Using Combination of Metal Chlorides in Imidazolium Ionic Liquid," Green Chem., 13, 1503-1506 (2011). https://doi.org/10.1039/c1gc15152e
  13. Binder, J. B., and Raines, R. T., "Simple Chemical Transformation of Lignocellulosic Biomas into Furans for Fuels and Chemicals," J. Am. Chem. Soc., 131, 1979-1985 (2009). https://doi.org/10.1021/ja808537j
  14. Tao, F., Song, H., and Chou, L., "Catalytic Conversion of Cellulose to Chemicals in Ionic Liquid," Carbohydrate Res., 346, 58-63 (2011). https://doi.org/10.1016/j.carres.2010.10.022
  15. Vasile, I. P., and Christopher, H., "Catalysis in Ionic Liquids," Chem. Rev., 107, 2615-2665 (2007). https://doi.org/10.1021/cr050948h
  16. Choi, J. H., Park, Y. B., Lee, S. H., Cheon, J. K., and Woo, H. C., "The Esterification of Oleic Acid Using Acidic Ionic Liquid Catalysts Immobilized on Silica Gel," Korean Chem. Eng. Res., 48, 583-588 (2010).
  17. Muruvet Y., Mehmet A., Yalcin, T., and Kadir, Y., "Acidity of Silica-Alumina Catalysts by Amine Titration Using Hammett Indicators and FT-IR Study of Pyridine Adsorption," Turkish J. Chem., 23, 319-327 (1999).
  18. Guan, J., Cao, Q., Guo, X., and Mu, X., "The Mechanism of Glucose Conversion of 5-Hydroxymethylfurfural Catalyzed by Metal Chlorides in Ionic Liquid: A Theoretical Study," Computat. Theoretical Chem., 963, 453-462 (2010).
  19. Vanoye, L., Fanselow, M., Holbrey, J. D., Atkins, M. P., and Seddon, K. R., "Kinetic Model for The Hydrolysis of Lignocellulosic Biomass in the Ionic Liquid, 1-Ethyl-3-Methyl-Imidazolium Chloride," Green Chem., 11, 390-396 (2009). https://doi.org/10.1039/b817882h
  20. Feng, L., and Chen, Z.-L., "Research Progress on Dissolution and Functional Modification of Cellulose in Ionic Liquids," J. Molecular Liquids, 142, 1-5 (2008). https://doi.org/10.1016/j.molliq.2008.06.007
  21. Kosan, B., Michels, C., and Meister, F., "Dissolution and Forming of Cellulose with Ionic Liquids," Cellulose, 15, 59-66 (2008). https://doi.org/10.1007/s10570-007-9160-x
  22. Zhao, H., Holladay, J. E., Brown, H., and Zhang, Z. C., "Metal Chlorides in Ionic Liquid Solvents Convert Sugars to 5-Hydroxymethylfurfural," Science, 316, 1597-1600 (2007). https://doi.org/10.1126/science.1141199
  23. Kitano, M., Yamaguchi, D., Suganuma, S., Nakajima, K., Kato, H., Hayashi, S., and Hara, M., "Adsorption-Enhanced Hydrolysis of ${\beta}$-1,4-Glucan on Graphene-Based Amorphous Carbon Bearing $SO_3H$, COOH, and OH Groups," Langmuir, 25, 5068-5075 (2009). https://doi.org/10.1021/la8040506
  24. Silvia M. R., Jose M. C., and Jose L. G., "High Glucose Yields from The Hydrolysis of Cellulose Dissolved in Ionic Liquids," Chem. Eng. J., 181-182, 538-541 (2012). https://doi.org/10.1016/j.cej.2011.11.061
  25. Zhang, C., Fu, Z., Liu, Y., Dai, B., Zou, Y., Gong, X., Wang, Y., Deng, W., Wu, H., Xu, Q., Steven, R. K., and Yin, D., "Ionic Liquid-Functionalized Biochar Sulfonic Acid as A Biomimetic Catalyst for Hydrolysis of Cellulose and Bamboo under Microwave Irradiation," Green Chem., 14, 1928-1934 (2012). https://doi.org/10.1039/c2gc35071h
  26. Miao, J.-M., Wan, H., Saho, Y.-B., Guan, G.-F., and Xu, B., "Acetalization of Carbonyl Compounds Catalyzed by Acidic Ionic Liquid Immobilized on Silica Gel," J. Molecular Catal. A: Chem., 348, 77-82 (2011). https://doi.org/10.1016/j.molcata.2011.08.005
  27. Miao, J.-M., Wan, H., and Guan, G.-F. "Synthesis of Immobilized Bronsted Acidic Ionic Liquid on Silica Gel as heterogeneous Catalyst for Esterification," Catal. Commun., 12, 353-356 (2012).
  28. Feher, C., Krivan, E., Hancsok, J., and Skoda, R.-F., "Oligomerisation of Isobutene with Silica Supported Ionic Liquid Catalysts," Green Chem., 14, 403-409 (2012). https://doi.org/10.1039/c1gc15989e
  29. Ding, Z.-D., Shi, J.-C., Xiao, J.-J., Gu, W.-X., Zheng, C.-G., and Wang, H.-J., "Catalytic Conversion of Cellulose 5-hydroxymethyl Furfural Using Acidic Ionic Liquids and Co-catalyst," Carbohydrate Polym., 90, 792-798 (2012). https://doi.org/10.1016/j.carbpol.2012.05.083