DOI QR코드

DOI QR Code

Investigation of Friction Noise in Ball Joint Under Edge Loading Condition

가장자리 하중조건에서의 볼 조인트 마찰소음 연구

  • Kang, Jaeyoung (Div. of Mechanical and Automotive Engineering, Kongju Nat'l Univ.)
  • 강재영 (공주대학교 기계자동차공학부)
  • Received : 2014.03.27
  • Accepted : 2014.05.07
  • Published : 2014.07.01

Abstract

This study provided the analytical model describing the friction-induced noise in the ball joint system under the edge loading condition. The frictional and conformal contact kinematics between the spherical bearing and the hemispherical socket was derived and the dynamic equations of the perturbed motion were established. The numerical results revealed that the bending modes of the ball joint system can become unstable due to friction, and the axial load and contact stiffness strongly influenced the dynamic instability. In contrast, the tilting angle of the socket was not found to significantly contribute to the dynamic instability of the ball joint.

본 연구에서는 볼 조인트 구조에서 가장자리 하중을 받고 있을 때의 마찰 소음을 이론적으로 연구하였다. 구형 베어링 구조체와 반구 형태의 소켓간 마찰접촉 모델을 수학적으로 유도하여 동역학적 운동방정식을 전개하였다. 그 결과 볼 조인트부 굽힘 모드가 마찰에 의해 불안정할 수 있음을 보였고, 축력 및 접촉강성이 볼 조인트 동적 불안정성에 크게 영향을 주고 있음을 보였다. 반면 소켓의 틸팅 각도는 동적 불안정성에 크게 기여하지 않음을 보였다.

Keywords

References

  1. Mariot, J., K'nevez, J. and Barbedette, B., 2004, "Tripod and Ball Joint Automotive Transmission Kinetostatic Model Including Friction," Multibody System Dynamics, Vol. 11, pp. 127-145. https://doi.org/10.1023/B:MUBO.0000025412.15396.69
  2. Fischer, I. S., 2000, "Numerical Analysis of Displacements in Spatial Mechanisms with Ball Joints," Mechanism and Machine Theory, Vol. 35, pp. 1623-1640. https://doi.org/10.1016/S0094-114X(99)00058-0
  3. Mattei, L., Puccio, F., Piccigallo, B. and Ciulli, E., 2011, "Lubrication and Wear Modelling of Artificial Hip Joint: A Review," Tribology International, Vol. 44, pp. 532-549. https://doi.org/10.1016/j.triboint.2010.06.010
  4. Hwang, S., Kim, J., Seo, S., Han, S. and Lee, K., 2011, "Caulking and Gap Analysis for a Ball Joint," Trans. Korean Soc. Mech. Eng. A, Vol. 35, pp. 1077-1082. https://doi.org/10.3795/KSME-A.2011.35.9.1077
  5. Ibrahim, R. A., 1994, "Friction-Induced Vibration, Chatter, Squeal, and Chaos Part II: Dynamics and Modeling," Applied Mechanics Reviews, ASME, Vol. 47, pp. 227-253. https://doi.org/10.1115/1.3111080
  6. Yang, S. M. and Mote, C. D., 1991, "Stability of Non-Conservative Linear Discrete Gyroscopic Systems," Journal of Sound and Vibration, Vol. 147, pp. 453-464. https://doi.org/10.1016/0022-460X(91)90493-4
  7. Kirillov, O. N., 2006, "Gyroscopic Stabilization of Non-Conservative Systems," Physics Letters A, Vol. 359, pp. 204-210. https://doi.org/10.1016/j.physleta.2006.06.040
  8. Nack, W., 2000, "Brake Squeal Analysis by Finite Elements," International Journal of Vehicle Design, Vol. 23, pp. 263-275. https://doi.org/10.1504/IJVD.2000.001895
  9. Bajer, A., Belskyl, V. and Zeng, L., 2003, "Combining a Nonlinear Static Analysis and Complex Eigenvalue Extraction in Brake Squeal Simulation," 2003-01-3349, SAE, Warrendale, PA.
  10. Kang, J., 2009, "Squeal Analysis of Gyroscopic Disc Brake System Based on Finite Element Method," International Journal of Mechanical Science, Vol. 51, pp. 284-294. https://doi.org/10.1016/j.ijmecsci.2009.02.003
  11. Kang, J. and Kim, K., 2010, "Squeak Noise in Lead Screw Systems: Self-Excited Vibration of Continuous Model, "Journal of Sound and Vibration, Vol. 329, pp. 3587-3595. https://doi.org/10.1016/j.jsv.2010.03.018
  12. Kang, J., 2014, "Investigation on Friction Noise in Beam Structure Under Mode-Coupling by Using Analytical Finite-Element Squeal Model," Trans. Korean Soc. Mech. Eng. A, in-press. https://doi.org/10.3795/KSME-A.2014.38.5.545
  13. Kang, J., 2011, "Theoretical Model of Ball Joint Squeak," Journal of Sound and Vibration, Vol. 330, pp. 5490-5499. https://doi.org/10.1016/j.jsv.2011.06.018