DOI QR코드

DOI QR Code

나노 구조가 형성된 열전달 표면에서의 임계 열유속 증진 메커니즘

Critical Heat Flux Enhancement Mechanism on a Surface with Nano-Structures

  • 김동억 (경북대학교 정밀기계공학과)
  • Kim, Dong Eok (Dept. of Precision Mechanical Engineering, Kyungpook Nat'l Univ.)
  • 투고 : 2014.03.21
  • 심사 : 2014.05.21
  • 발행 : 2014.07.01

초록

나노 구조가 형성된 열전달 표면에서 유체의 비등 시 임계 열유속 값이 나노 구조가 없는 표면보다 현저히 증가한다는 것은 잘 알려진 사실이다. 다수의 물리적 메커니즘들이 이러한 나노 구조에서의 임계 열유속 증진 현상을 설명하기 위해 제안되어 왔다. 하지만 지금까지 대부분의 연구들은 정성적인 결과를 제시해 왔으며, 이러한 현상을 일반적으로 설명할 수 있는 이론은 아직 확립되지 않았다. 본 연구에서는 나노 구조가 형성된 표면에서의 임계 열유속 증진에 관한 정량적인 메커니즘을 증기 반동력 및 표면 접착력에 기초하여 제안하고자 한다. 특히, 본 연구에서는 임계 열유속 증진 현상을 표면에 형성된 나노 구조로 인한 액체, 증기, 고체의 삼중선 길이의 증가 및 나노 구조와 액체 사이의 접착력에 근거하여 설명하였다.

The critical heat flux (CHF) on a heat transfer surface with nanostructures is known to be significantly better than that on flat surfaces. Several physical mechanisms have been proposed to explain this phenomenon. However, almost all studies conducted so far have been qualitative, and a generalized theory has not yet been established. In this study, we developed a quantitative mechanism for CHF enhancement on a surface with nanostructures, based on vapor recoil and surface adhesion forces. We focused on the increase in the length of the triple contact line owing to the formation of nanostructures and the adhesion force between them and the liquid.

키워드

참고문헌

  1. Zuber, N., 1959, "Hydrodynamic Aspects of Boiling Heat Transfer," AECU-4439, Physics and Mathematics, US Atomic Energy Commission.
  2. Liter, S.G. and Kaviany, M., 2001, "Pool-boiling CHF Enhancement by Modulated Porous-Layer Coating: Theory and Experiment," Int. J. Heat Mass Transfer, 44, pp. 4287-4311. https://doi.org/10.1016/S0017-9310(01)00084-9
  3. Liaw, S. P. and Dhir, V. K., 1986, "Effect of Surface Wettability on Transition Boiling Heat Transfer from a Vertical Surface," ASME J. Heat Transfer, Proceedings of the 8th International Heat Transfer Conference, San Francisco, CA., Vol. 4, pp. 2013-2036.
  4. Ramilison, J.M., Sadasivan, P. and Lienhard, J.H., 1992, "Surface Factors Influencing Burnout on Flat Heaters," ASME J. Heat Transfer, 114, pp. 287-290. https://doi.org/10.1115/1.2911261
  5. Kandlikar, S.G., 2001, "A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation," ASME J. Heat Transfer, 114, pp. 1071-1079.
  6. Theofanous, T. G., Dinh, T. N., Tu, J. P. and Dinh, A. T., 2002, "The Boiling Crisis Phenomenon: Part II: Dryout Dynamics and Burnout," Exp. Thermal and Fluid Sci., 26, 793-810. https://doi.org/10.1016/S0894-1777(02)00193-0
  7. Tanaka, Y., Hidaka, S., Cao, J. M., Nakamura, T., Yamamoto, H., Masuda, M. and Ito, T., 2005, "Effect of Surface Wettability on Boiling and Evaporation," Energy, 30, pp. 209-220. https://doi.org/10.1016/j.energy.2004.05.004
  8. Nikolayev, V. S. and Beysens, D. A., 1999, "Boiling Crisis and Non-Equilibrium Drying Transition," Europhys. Lett., 47, pp. 345-351. https://doi.org/10.1209/epl/i1999-00395-x
  9. Nikolayev, V. S., Chatain, D., Garrabos, Y. and Beysens, D., 2006, "Experimental Evidence of the Vapor Recoil Mechanism in the Boiling Crisis," Phys. Rev. Lett., 97, 184503.
  10. Kim H. D. and Kim, M. H., 2007, "Effect of Nanoparticle Deposition on Capillary Wicking that Influences the Critical Heat Flux in Nanofluids," Appl. Phys. Lett., 91, 014104. https://doi.org/10.1063/1.2754644
  11. Park, S. D., Lee, S. W., Kang, S., Bang, I. C., Kim, J. H., Shin, H. S., Lee, D. W. and Lee, D. W., 2010, "Effects of Nanofluids Containing Graphene/Graphene-Oxide Nanosheets on Critical Heat Flux," Appl. Phys. Lett., 97, 023103.
  12. Kim, S. J., Bang, I. C., Buongiorno, J. and Hu, L. W., 2007, "Surface Wettability Change During Boiling of Nanofluids and Its Effect on Critical Heat Flux," Int. J. Heat Mass Transfer, 50, pp. 4105-4116. https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.002
  13. Kim, H. D., 2007, "An Experimental Study on Pool Boiling CHF Enhancement Using Nanofluids," Ph. D. Thesis, POSTECH, Korea.
  14. Moon, I.K., Lee, J. H., Ruoff, R. S. and Lee, H. Y., 2010, "Reduced Graphene Oxide by Chemical Graphitization," Nat. Commun., 1, 73, doi:10.1038/ncomms1067.
  15. Kim, S., Kim, H. D., Kim, H., Ahn, H. S., Jo, H., Kim, J. and Kim, M. H., 2010, "Effects of Nano-Fluid and Surfaces with Nano Structure on the Increase of CHF," Exp. Thermal and Fluid Sci., 34, pp. 487-495. https://doi.org/10.1016/j.expthermflusci.2009.05.006
  16. Kim, S., Kim, H. D., Kim, H., Ahn, H. S., Jo, H., Kim, J. and Kim, M. H., 2010, "Effects of Nano-Fluid and Surfaces with Nano Structure on the Increase of CHF," Exp. Thermal and Fluid Sci., 34, pp. 487-495. https://doi.org/10.1016/j.expthermflusci.2009.05.006
  17. Wu, W., Bostanci, H., Chow, L. C., Hong, Y., Su, M. and Kizito, J. P., 2010, "Nucleate Boiling Heat Transfer Enhancement for Water and FC-72 on Titanium Oxide and Silicon Oxide Surfaces," Int. J. Heat Mass Transfer, 53, pp. 1773-1777. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.013
  18. Li, C., Wang, Z., Wang, P., Peles, Y., Koratkar, N. and Peterson, G. P., 2008, "Nanostructured Copper Interfaces for Enhanced Boiling," Small, 4, pp. 1084-1088. https://doi.org/10.1002/smll.200700991