DOI QR코드

DOI QR Code

Evaluation on Strain Properties of 60 MPa Class High Strength Concrete according to the Coarse Aggregate Type and Elevated Temperature Condition

60MPa급 고강도 콘크리트의 굵은골재 종류와 고온상태에 따른 변형특성 평가

  • Received : 2013.09.30
  • Accepted : 2014.01.05
  • Published : 2014.06.30

Abstract

Strain properties of concrete member which acts as an important factor in the stability of the concrete structure in the event of fire, significantly affected the characteristics of the coarse aggregate, which accounts for most of the volume. For this reason, there are many studies on concrete using artificial lightweight aggregate which has smaller thermal expansion deformation than granite coarse aggregate. But the research is mostly limited on concrete using clay-based lightweight aggregate. Therefore, in this study, the high temperature compressive strength and elastic modulus, thermal strain and total strain, high temperature creep strain of concrete was evaluated. As a result, remaining rate of high-temperature strength of concrete using lightweight aggregate is higher than concrete with general aggregate and it is determined to be advantageous in terms of structural safety and ensuring high-temperature strength from the result of the total strain by loading and strain of thermal expansion. In addition, in the case of high-temperature creep, concrete shrinkage is increased by rising loading and temperature regardless of the type of aggregate, and concrete using lightweight aggregate shows bigger shrinkage than concrete with a granite-based aggregate. From this result, it is determined to require additional consideration on a high temperature creep strain in case of maintaining high temperature like as duration of a fire although concrete using light weight aggregate is an advantage in reducing the thermal expansion strain of the fire.

화재시 콘크리트 구조물은 구성재료의 상이한 열적특성으로 인해 강도가 저하하고 동시에 수직부재는 수평부재의 팽창에 의한 모멘트하중을 받아 전단파괴가 발생한다. 따라서 여러가지 화재곡선을 사용한 콘크리트 구조물의 화재시 거동에 대한 연구가 많이 이루어졌지만 주로 온도상승구간에서 발생하는 폭렬특성과 열팽창변형에 관한 연구가 대부분이다. 하지만 고온이 유지될 경우 발생할 수 있는 크리프변형은 화재시 구조물의 안정성에 큰 영향을 미치지만 상대적으로 연구가 미진한 상태이다. 또한 이러한 고온을 받는 콘크리트의 안정성에는 체적의 대부분을 차지하는 굵은골재의 열적특성이 큰 영향을 미치기 때문에 이 연구에서는 화강암계, clay계, clay-ash계 세 종류의 굵은골재를 사용한 콘크리트의 고온 역학적 특성을 평가했다. 그 결과 굵은골재의 성인으로 인한 내부공극 때문에 경량골재를 사용한 콘크리트가 일반골재를 사용한 콘크리트보다 높은 고온강도 및 탄성계수를 나타냈고 열팽창변형과 전체변형의 경우 더 낮은 변형률을 나타내어 온도상승구간에서의 구조적 안정성 측면에서 유리한 것으로 판단되었다. 그러나 고온크리프의 경우 내부공극으로 인해 더 큰 수축량이 발생하기 때문에 내화성능설계시에 이에 대한 추가적인 고려가 필요할 것으로 판단되었다.

Keywords

References

  1. Culver, C. G. and Crist, R. A., "Fire Performance of Military Record Center," ACI Journal, 1975.
  2. Oh, C. H., "A Study on Damage and Repair of Concrete Buildings after a Fire," Doctoral Dissertation of Tokyo Institute of Technology, 1985, pp. 3-22.
  3. Kim, G. Y., Kim, Y. S., Choe, G. C., Park, H. G., and Lee, T. G., "Evaluation on Mechanical Properties of High Strength Light-Weight Concrete with Elevated Temperature and loading," Journal of the Korea Concrete Institute, Vol. 23, No. 6, 2011, pp. 723-730. https://doi.org/10.4334/JKCI.2011.23.6.723
  4. Neville, A. M., Properties of Concrete, 4th ed. Longman, 1995, pp. 108-475.
  5. Kong, F. K., Evans, R. H., Cohen, E., and Roll, F., Handbook of Structural Concrete, Pitman Books Limited, 1983, pp. 215-578.
  6. Abeles, P. W. and Bardhan-Roy, B. K., Prestressed Concrete Designer's Handbook, In: Cement and Concrete Association, Wexham Springs, A Viewpoint Publication, 1981, pp. 20-41.
  7. Turker, P., Erdogdu, K., and Erdogan, B., "Investigation of the Various Type of Aggregate Mortar Exposed to Fire," Journal of Cement Concrete World, 2001, Vol. 6, Issue 31, pp. 52-69.
  8. Lim, J. H., "The Experimental Study of High-Strength Lightweight Concrete for the Enhancement of its Compressive Strength," Master's Thesis of Kyonggi University, 2010, pp. 4-13.
  9. Wu, B., Lam, S. S., Liu, Q., Chung, Y. M., and Ho, L. F. Y., "Creep Behavior of High-Strength Concrete with Polypropylene Fibers at Elevated Temperatures," ACI Materials Journal, Vol. 107, No. 2, 2010, pp. 176-184.
  10. RILEM TC 129-MHT, "Test Methods for Mechanical Properties of Concrete at High Temperatures: Part 8 Steady-State Creep and Creep Recovery for Service and Accident Conditions," Materials and Structures, Vol. 33, 2000, pp. 6-13. https://doi.org/10.1007/BF02481690
  11. Harada, T., Takeda, J., Yamane, S., and Furumura, F., Strength, Elasticity and Thermal Properties of Concrete Subjected to Elevated Temperatures, ACI American Concrete Institute, Special Publication, 1972, SP-34, pp. 377-406.
  12. Hammer, T. A., "High-Strength Concrete Phase 3, Compressive Strength and E-Modulus at Elevated Temperatures, Fire Resistance," Report 6.1, SINTEF Structures and Concrete, STF 70 A95023, 1995, pp. 18-57.
  13. Sullivan, P. J. E., et. al., "Performance of Concrete at Elevated Temperatures (as Measured by the Reduction in Compressive Strength)," Fire Technology, Vol. 28, No. 3, 1992, pp. 351-359.
  14. Hertz, K. D., "Concrete Strength for Fire Safety Design," Magazine of Concrete Research, Vol. 57, No. 8, 2005, pp. 445-453. https://doi.org/10.1680/macr.2005.57.8.445
  15. Andic-Cakir, O. and Hizal, S., "Influence of Elevated Temperatures on the Mechanical Properties and Microstructure of Self Consolidating Lightweight Aggregate Concrete," Construction and Building Materials, Vol. 34, 2012, pp. 575-583. https://doi.org/10.1016/j.conbuildmat.2012.02.088
  16. Yeo, I. W. and John, Y. W., "A Study on the Behaviors of Granites Subjected to Thermal Stress," Journal of the Korean Institute of Mineral and Energy Resources Engineers, Vol. 29, No. 5, 1992, pp. 263-275.