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Abstract—In this paper, we propose a new memristor-
based crossbar array architecture, where a single 
memristor array and constant-term circuit are used 
to represent both plus-polarity and minus-polarity 
matrices. This is different from the previous crossbar 
array architecture which has two memristor arrays to 
represent plus-polarity and minus-polarity connection 
matrices, respectively. The proposed crossbar 
architecture is tested and verified to have the same 
performance with the previous crossbar architecture 
for applications of character recognition. For areal 
density, however, the proposed crossbar architecture 
is twice better than the previous architecture, because 
only single memristor array is used instead of two 
crossbar arrays. Moreover, the power consumption of 
the proposed architecture can be smaller by 48% than 
the previous one because the number of memristors in 
the proposed crossbar architecture is reduced to half 
compared to the previous crossbar architecture. From 
the high areal density and high energy efficiency, we 
can know that this newly proposed crossbar array 
architecture is very suitable to various applications of 
analog neuromorphic computing that demand high 
areal density and low energy consumption.   
 
Index Terms—Memory array circuit, memristor, 
artificial neural network, synaptic weight, character 
recognition   

I. INTRODUCTION 

As high performance computation is demanded 
increasingly, the conventional von Neumann architecture 
becomes less efficient in terms of energy consumption, 
compared to biological systems such as human brains [1]. 
To overcome the limitation of von Neumann architecture, 
neuromorphic systems that can mimic the capabilities of 
biological perception and information processing have 
gained more attention since C. Mead introduced the term 
“neuromorphic engineering” in his pioneering work [2].  

For implementing neuromorphic systems, various 
research activities that are based on CPUs, GPUs, 
FPGAs, analog circuits, memory circuits, etc. have been 
carried out both in academia and industry [3-10]. Among 
them, simple crossbar array architecture has been one of 
strong candidates for promising neuromorphic 
architectures, because crossbar architecture can be made 
with high density and low cost [11].  

In realizing crossbar array for neuromorphic systems, 
nano-scale two-terminal device such as memristors that 
can emulate synaptic plasticity with high energy 
efficiency can be a critical element [12, 13]. Memristors 
mathematically predicted by Leon O. Chua in 1971 as 
the fourth basic circuit element [14] were experimentally 
found in 2008 [15]. Since the first prediction of 
memristors, they have been thought as potential 
candidate that can mimic various synaptic functions of 
biological neural systems [12]. This is because 
memristors can be integrated with 3-D array that may be 
as dense as neuronal array in human brains [11]. In 
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addition, memristors that can store analog values are 
useful in representing synaptic weights to emulate 
synaptic plasticity [12]. 

There are several ways that mimic synaptic behavior 
of human brains using CMOS-memristor hybrid circuits 
[16-20]. One simple example of the CMOS-memristor 
hybrid circuits for emulating the synaptic plasticity was 
proposed by Hui Wang et al. [17], where the artificial 
synapse was implemented by combining one transistor 
(1T) with one memristor (1M). Here, the transistor (1T) 
is used as a selecting device that can choose a specific 
memristor to be programmed [17]. In the 1T-1M synaptic 
circuit, the array density is decided by transistor’s area 
not by memristor’s area. Thus it seems difficult to realize 
high-density of 1T-1M array because selection devices 
such as transistors occupy much larger area than 
memristors [17]. In addition, in terms of 3-D integration, 
the 1T-1M array is thought to be more difficult to be 
stacked layer by layer compared to the passive memristor 
array that is composed of only passive memristors 
without any selection devices [17]. 

A crossbar array that is made of only passive 
memristors without any selection devices such as diodes 
and transistors was proposed and analyzed by Miao Hu et 
al. [20]. They used two memristor crossbar arrays that 
represent plus-polarity and minus-polarity connection 
matrices, respectively, for performing matrix-vector 
multiplication that is the most frequent operation in 
neuromorphic computing [1, 2]. 

In this paper, to improve energy efficiency and areal 
density better than the previous memristor-based crossbar 
architecture [20], we propose new crossbar array 
architecture, where both plus-polarity and minus-polarity 
connection matrices can be realized by single crossbar 
array and simple constant-term circuit. The new 
memristor-based neuromorphic architecture with only 
single crossbar array instead of two crossbar arrays can 
improve the areal density of crossbar array nearly double. 
Moreover, the energy efficiency can be better by 48% 
compared to the previous memristor-based crossbar 
architecture [21]. 

II. NEW MEMRISTOR-BASED CROSSBAR ARRAY 

Fig. 1(a) shows a simple diagram of neural network 
with synapse array, in which the input neurons are 

connected to the output neurons through the synaptic 
network. Fig. 1(b) shows a conceptual diagram of the 
previous crossbar architecture of analog neuromorphic 
computing systems containing both plus-polarity and 
minus-polarity connection matrices that are represented 
by the crossbar array of M+(g+j,k) and M-(g-

j,k), 
respectively [20]. Here g+

j,k and g-
j,k are memristor’s 

conductance values of the plus-polarity and minus-
polarity memristor arrays, respectively. VIN,j is the jth 
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Fig. 1. (a) A simple diagram of neural network with synapse 
array, (b) A conceptual diagram of the previous memristor-
based crossbar architecture with plus-polarity and minus-
polarity connection matrices that are represented by the two 
crossbar arrays of M+(g+j,k) and M-(g-j,k), respectively [20],
(c) A conceptual diagram of the proposed memristor crossbar 
architecture with the single crossbar array of M-(g-j,k) and the 
constant-term circuit of 1/RB. 
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input voltage which is applied to the connection matrices 
of M+(g+j,k) and M-(g-j,k). OUTk is the kth output voltage 
of Fig. 1(b). 

The two crossbar arrays of M+(g+
j,k) and M-(g-

j,k) that 

are needed to calculate ( ), , ,j k j k IN jg g V+ -- can be 

replaced with the single crossbar array of M-(g-
j,k) and the 

constant-term circuit of 1/RB. As shown in Fig. 1(c), if 

we implement ( ), ,1/ B j k IN jR g V-- using the single 

memristor crossbar array of M-(g-
j,k) and the constant-

term circuit of 1/RB, we can reduce both the area and 
power consumption of two crossbar arrays of M+(g+

j,k) 
and M-(g-

j,k) in Fig. 1(b). Here, if g-
j,k is smaller than 1/RB, 

1/RB-g-
j,k has plus polarity. On the contrary, if g-

j,k is 
larger than 1/RB, 1/RB-g-

j,k becomes negative, thus, we 
can realize both plus and minus polarities as indicated in 
Fig. 1(c). The obvious advantage illustrated in Fig. 1(c) 
over Fig. 1(b) implies lower power consumption and 
smaller area of crossbar array for performing matrix-
vector multiplication. 

The detailed schematic of memristor-based crossbar 
arrays of plus-polarity and minus-polarity connection 
matrices is shown in Fig. 2 [20]. Here M+(g+

j,k) and M-(g-

j,k) are the crossbar arrays of the connection matrices with 
plus and minus polarities, respectively [20]. g+

1,1 is 
memristor’s conductance at the crossing point between 
the first row and first column of M+ array. g+

j,k is 
memristor’s conductance of the jth row and kth column 
of M+ array. And, g-

1,1 and g-
j,k in M- array are 

conductance values that are located at the same crossing 
points with each g+

1,1 and g+
j,k, respectively, in M+ array. 

VIN,1 and VIN,2 are the input voltages applied to the first 
row and second row, respectively. VIN,j is the applied 
voltage for the jth row. VC+,1 and VC+,2 are the column 
voltages of the first and second columns, respectively, in 
M+ array. VC+,k is for the kth column in M+ array. 
Similarly, VC-,1, VC-,2, and VC-,k are the first, second, and 
kth column voltages, respectively, in M- array. G+

1 and G-

1 are inverting OP amps for the first columns in M+ and 
M- crossbar array, respectively. R1 and R2 are negative-
feedback resistors of G+

1 and G-
1, respectively. VO+,1 and 

VO-,1 are the output voltages of G+
1 and G-

1, respectively. 
G1 is the difference OP amp that amplifies the difference 
between VO+,1 and VO-,1. The output of G1 is VO,1. In Fig. 
2, R3 and R4 constitute the negative feedback 
configuration of G1. R5 and R6 act as the voltage divider. 

VO,1 enters C1 that compares VO,1 and VREF to decide the 
final output, OUT1. 

Applying Kirchhoff current and voltage laws to Fig. 2, 
VO,k can be calculated with the difference of VO+,k and 
VO-,k. 
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If we assume that R6=R4, R3=R5, and R1=R2, we can 
obtain: 
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Each VIN,j is multiplied by a coefficient defined by 

 

Fig. 2. The previous memristor-based crossbar arrays of 
M+(g+

j,k) and M-(g-
j,k) that represent plus-polarity and minus-

polarity connection matrices, respectively [20]. 
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. By choosing the appropriate 

conductance values of ,j kg+  and ,j kg-  in Eq. (2), we 

can obtain either positive or negative polarity of 

, ,j k j kg g+ --  in Eq. (2). By doing so, the coefficients 

which are represented by M+ and M- in Fig. 2 can have 
both positive and negative values according to the 
programmed conductance values of memristors in the 
arrays. 

Fig. 3 shows a new synaptic array circuit that is 
composed of the single crossbar array of M-(gj,k) and the 

constant-term circuit of 1/RB. Here ,j kg  is memristor’s 

conductance at the crossing point between the jth row 
and kth column. VIN,j is input voltage applied to the jth 
row. VC,k is column-line voltage on the kth column. The 
column line, VC,F, that is shown in dotted box is added in 
Fig. 3. The column line, VC,F is connected to all the 
applied input voltages from VIN,1 to VIN,m through RB. In 
Fig. 3, VC,F enters GF that constitutes the inverting OP 

amp with the negative feedback resistor RF1. The output 
voltage of GF is VF that is connected to all column lines 
from VC,1 to VC,n via RF2, as shown in Fig. 3. By applying 
Kirchhoff current law to the column line, VC,F, we can 
calculate VF with Eq. (3). 
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For the column lines, as you can see in Fig. 3, each 
column line is connected to its inverting amplifier, from 
G1 to Gn. For example, VC,1 enters G1 with the negative 
feedback resistor, R0. VO,1 is the output voltage of G1. 
Similarly, VC,k goes into Gk and VO,k is the output voltage 
of Gk. VO,k can be calculated with Eq. (4). 
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Assuming that RF1=RF2 and combining Eq. (4) with Eq. 
(3), the following Eq. (5) can be obtained as follows. 
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is defined by the synaptic weight 

of the jth row and kth column, wj,k, we can rewrite Eq. 
(5) with Eq. (6). 
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Here Mj,k is memristance value between the jth row 

and the kth column. By keeping RB to be constant, the 
synaptic weight, wj,k can be decided by the 
programmable memristance, Mj,k and the feedback 

 

 

Fig. 3. The proposed memristor-based crossbar architecture, 
where two crossbar arrays of M+(g+

j,k) and M-(g-
j,k) are replaced 

with the single crossbar array, M-(gj,k) and the constant-term
circuit, 1/RB. 
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resistor, R0. Adding the comparator, Ck to the output 
voltage, VO,k, we can decide if the neuron’s output of kth 
column, OUTk should be activated or not. VREF is the 
reference voltage for the comparators from C1 to Cn. 
When VO,k is larger than VREF, OUTk becomes 1. On the 
other hand, if VO,k is smaller than VREF, OUTk is decided 
to be 0, as indicated in Eq. (7). 
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III. SIMULATION RESULTS 

1. Training of the Memistor-Based Crossbar Array 
 
The chip-in-the-loop algorithm is used to train the 

circuit variables in Fig. 3 [19, 22]. The conceptual 
diagram of the chip-in-the-loop learning algorithm is 
shown in Fig. 4. Here wj,k is the weighting value 
associated with the jth input and kth output. tk is the 
target value of output. VO,k is the kth output. h is the 
learning rate. D is a set of training examples. VIN,j is the 
jth input. According to the chip-in-the-loop algorithm, 
the target network is learned on the host computer. All 
the outputs of memristor-based crossbar array are stored 

in the host computer’s memory. Dwj,k is calculated using 
the equation shown in Fig. 4. wj,k is updated by Dwj,k 
until Ed becomes smaller than the predetermined error 
value. 

 
2. Application of Character Recognition 

 
The proposed memristor crossbar architecture 

demonstrated in Fig. 3 is tested for the application of 
character recognition. Fig. 5(a) shows an image of 
alphabet ‘D’ that is composed of 8x8 black-and-white 
pixels. Similarly, we can have the images of the other 
characters such as ‘A’, ‘B’, ‘C’, etc. To recognize 26 
alphabet characters, the memristor crossbar array is 
designed to have 26 columns that are corresponding to 
the alphabet characters from ‘A’ to ‘Z’, respectively. 
Each column of the crossbar array is applied by 64 rows 
that are given by 64 input voltages, respectively. The 64 
input voltages are obtained from 8x8 pixels of the 
character to be recognized. Let us try to recognize the 
character ‘D’, as shown in Fig. 5(a). Before recognizing 
‘D’, the proposed crossbar array in Fig. 3 should be 
trained to recognize all character images. The 
memristance values are trained by the chip-in-the-loop 
learning algorithm that is shown in Fig. 4.  

Fig. 5(c) shows the simulation result of character 
recognition for the previous crossbar array architecture 
that is shown in Fig. 2. From this Fig. 5(c), we can see 
that the output voltage of the 4th column, VO,4 in the 
previous crossbar array, is activated for the input vector 
of character ‘D’. In Fig. 5(c), we tested the input vectors 
from the character ‘A’ to the character ‘Z’ to the previous 
crossbar architecture in Fig. 2. 

The simulation result of the proposed new crossbar 
architecture is shown in Fig. 5(d). Comparing Figs. 5(c) 
and (d), we can know that the discrepancy in VO,4 
between the previous crossbar architecture and the 
proposed architecture is less than 2% in average from the 
character ‘A’ to the character ‘Z’. This comparison tells 
us that the performance of character recognition of the 
proposed crossbar architecture is the same with the 
previous crossbar architecture. In Figs. 5(c) and (d), VREF 
means the threshold voltage for recognizing the target 
character. The simulation results that are shown in Figs. 
5(c) and (d) are obtained by the SPECTRE simulator that 
is provided by Cadence Design Systems Inc. In this work, 
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Fig. 4. The chip-in-the-loop algorithm is used to update the 
synaptic weight, wj,k in the proposed memristor-based crossbar 
architecture shown in Fig. 3. 
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the memristor-CMOS hybrid circuits are simulated by 
SPECTRE using the memristor’s Verilog-A model [23] 
and the CMOS model parameters which were given by 
SAMSUNG 0.13-mm process technology. 

In Fig. 6, we compared the power consumption 
between the previous crossbar architecture in Fig. 2 and 
the proposed crossbar architecture in Fig. 3 in 
recognizing 26 alphabet characters from ‘A’ to ‘Z’. The 
power consumption of the proposed crossbar is 0.5211 
mW in average for 26 characters. This power 
consumption is smaller by 48% than the power 
consumption of the previous architecture that consumes 

1.0098 mW. The smaller amount of power consumption 
in the proposed crossbar in Fig. 3 is mainly due to the 
fact that only single crossbar array is used instead of two 
arrays in Fig. 2. 

V. CONCLUSIONS 

In this paper, we proposed the new memristor-based 
crossbar architecture with the single crossbar array and 
the constant-term circuit of 1/RB. This is different from 
the previous crossbar architecture that has two M+ (g+

j, k) 
and M-(g-

j, k) arrays representing the positive and 
negative connection matrices. The proposed crossbar 
architecture was tested and verified to have the same 
performance with the previous crossbar architecture for 
the application of character recognition. For the areal 
density, the proposed crossbar architecture can have 
double density than the previous architecture, because 
single array is used instead of two arrays. Moreover, the 
power consumption of the proposed architecture can be 
smaller by 48% than the previous one because the 
number of memristors in the proposed crossbar 
architecture is only half smaller than the previous 
crossbar. From this high areal density and high energy 
efficiency, we can know that the newly proposed 
crossbar architecture is very suitable to various 
applications of analog neuromorphic computing that 
demand high areal density and high energy efficiency. 
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Fig. 5. (a) The 8x8 pixel image of character ‘D’, (b) The 
schematic of the character recognition circuit that is based on 
the memristor-based crossbar architecture for training to 
recognize the character ‘D’, (c) The simulation result of 
character recognition for the previous memristor-based crossbar 
architecture that has two crossbar arrays of M+(g+

j,k) and M-(g-
j,k) 

in Fig. 2, (d) The simulation result of character recognition for 
the proposed memristor-based crossbar architecture that has the 
single crossbar array of M-(gj,k) and the constant term, 1/RB. 
Here VREF means the threshold voltage for recognizing the 
target character. 
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Fig. 6. Comparison of power consumption between the 
previous crossbar architecture and the proposed crossbar 
architecture for 26 characters from ‘A’ to ‘Z’. 
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