DOI QR코드

DOI QR Code

Thermal Performance Analysis of Multiple Thermal Energy Storage (TES) Caverns with Different Separation Distances Using Computational Fluid Dynamics

전산유체역학을 이용한 다중 열저장공동의 이격거리별 열적 성능 분석

  • 박도현 (한국지질자원연구원 지구환경연구본부) ;
  • 박의섭 (한국지질자원연구원 지구환경연구본부) ;
  • 선우춘 (한국지질자원연구원 지구환경연구본부)
  • Received : 2014.05.07
  • Accepted : 2014.05.20
  • Published : 2014.06.30

Abstract

In the present study, the thermal performance of multiple rock caverns for large-scale thermal energy storage (TES) was numerically investigated for different separation distances between the caverns through heat transfer analysis using a computational fluid dynamics code, FLUENT. The thermal performance of multiple caverns was assessed in terms of the thermal stratification within the caverns and the heat loss to the surroundings, and the heating characteristics of the rock around the caverns were investigated. The results of numerical simulation showed that there was little difference in thermal performance between multiple TES caverns with different separation distances when the surrounding rock was less heated and it reached thermal steady-state, which represent the thermal states of the surrounding rock at the early and long-term operational stages of the TES caverns, respectively. However, as the separation distance decreased, the rock between the caverns reached thermal steady-state more quickly, and thus the heat loss from the caverns tended to converge rapidly to the value of heat loss occurred under thermal steady-state conditions in the surrounding rock. This result implies that the operating cost of heating the surrounding rock (i.e., rock heating) can be reduced with a reduction in the separation distance between multiple caverns, and suggests that the separation distance should be determined by considering the operating cost of rock heating as well as the construction cost of the caverns.

본 연구에서는 전산유체역학 코드인 FLUENT를 이용한 열전달 해석을 통해 대규모 열에너지 저장을 위한 다중 암반공동의 이격거리별 열적 성능을 분석하였다. 저장공동 내부의 열성층화와 공동 외부로의 열손실 측면에서 열적 성능을 평가하였으며, 이격거리별로 시간경과에 따른 공동 주변 암반의 히팅 특성을 조사하였다. 분석결과, 주변 암반이 히팅되지 않은 초기 운영단계와 암반이 열적 정상상태에 도달한 장기 운영단계에서는 다중 암반공동의 이격거리에 따른 열적 성능의 차이가 거의 없는 것으로 검토되었다. 그러나 공동간 이격거리가 감소함에 따라 공동 사이의 암반이 열적 정상상태에 더 빠르게 도달하고, 이에 따라 저장공동 외부로의 열손실이 주변 암반의 열적 정상상태 조건에서의 열손실 값으로 빠르게 수렴하는 경향을 보였다. 이러한 결과는 다중 암반공동의 이격거리를 줄임으로써 주변 암반의 히팅에 소요되는 운영비용을 줄일 수 있음을 나타내며, 이로부터 다중 열저장 공동의 이격거리 결정시 공동의 건설비용과 함께 암반히팅에 대한 운영비용을 고려해야 함을 알 수 있었다.

Keywords

References

  1. ANSYS, 2014, FLUENT software, ANSYS Inc., Canonsburg, Pennsylvania, http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+Fluent, accessed on April 9, 2014.
  2. Cho C.H., J. Urquidi and G.W. Robinson, 1999a, Molecularlevel description of temerature and pressure effects on the viscosity of water, Journal of Chemical Physics 111.22, 10171-10176. https://doi.org/10.1063/1.480367
  3. Cho C.H., J. Urquidi, S. Singh and G.W. Robinson, 1999b, Thermal offset viscosities of liquid H2O, D2O, T2O, Journal of Physical Chemistry B 103.11, 1991-1994.
  4. Johari G.P., A. Hallbrucker and E. Mayer, 1996, Two calorimetrically distinct states of liquid water below 150 Kelvin, Science 273.5271, 90-92. https://doi.org/10.1126/science.273.5271.90
  5. Joo H.J., J.B. Jung and H.Y. Kwak, 2008, Numerical study on thermal stratification of the aspect ratio of solar thermal storage tank, Proceedings of the Korean Solar Energy Society (2008) Fall Conference, 178-183.
  6. KDHC (Korea District Heating Corporation), 2013, Simulator for estimating heating cost, http://www.kdhc.co.kr, accessed on February 26, 2013.
  7. KIGAM (Korea Institute of Geoscience and Mineral Resources), 2012, Development of core technology for underground thermal energy storage in rock cavern, Research report GP2011-003-2012(1) Part. III, Ministry of Knowledge Economy, Seoul.
  8. KMA (Korea Meteorological Administration), 2011, Climatological normals of Korea (1980-2010), KMA, Seoul.
  9. Lee, H.W. and C.I. Lee, 1996, A study on temperature dependency of strength and deformation behavior of rocks, Tunnel & Underground Space 6.2, 101-121.
  10. Lide D.R., 1990, CRC handbook of chemistry and physics, CRC Press, Florida.
  11. Park, D., Kim, H.M., Ryu, D.W., Choi, B.H., Sunwoo, C. and K.C. Han, 2012, Numerical study on the thermal stratification behavior in underground rock cavern for thermal energy storage (TES), Tunnel & Underground Space 22.3, 188-195. https://doi.org/10.7474/TUS.2012.22.3.188
  12. Park, D., Ryu, D.W., Choi, B.H., Sunwoo, C. and K.C. Han, 2013, Thermal stratification and heat loss in underground thermal storage caverns with different aspect ratios and storage volumes, Tunnel & Underground Space 23.1, 308-318. https://doi.org/10.7474/TUS.2013.23.4.308
  13. Park, D., Kim, H., Park, J.W., Park, E.S. and C. Sunwoo, 2014, Analysis of the optimal separation distance between multiple thermal energy storage (TES) caverns based on probabilistic analysis, Tunnel & Underground Space 24.2, 155-165. https://doi.org/10.7474/TUS.2014.24.2.155
  14. Shyu R.J., J.Y. Lin and L.J. Fang, 1989, Thermal analysis of stratified storage tanks, ASME Journal of Solar Energy Engineering 111.1, 54-61. https://doi.org/10.1115/1.3268287
  15. Song Y., 2008, Discussion on assessment and competitiveness of the geothermal resources, Journal of the Korean Society for Geosystem 45.4, 293-304.
  16. Takakura T., 1989, Technical models of the greenhouse environment, Acta Horticulture 248, 49-54.
  17. XYdatasource.com, 2012, Liquid thermal conductivity of water vs. temperature, http://www.xydatasource.com/xyshowdatasetpage.php?datasetcode=8888&dsid=109, accessed on March 30, 2012.

Cited by

  1. Guidelines for Designing the Shape and Layout of Thermal Energy Storage (TES) Rock Caverns vol.25, pp.2, 2015, https://doi.org/10.7474/TUS.2015.25.2.115