DOI QR코드

DOI QR Code

Distributed Time Division Piconet Coexistence Using Local Time Offset Exchange

로컬 오프셋을 이용한 분산 시간 분리 피코넷 충돌회피 방법론

  • Park, Yongsuk (Graduate School of Information Security, Sejong Cyber University)
  • Received : 2014.04.29
  • Accepted : 2014.05.26
  • Published : 2014.06.30

Abstract

Wireless Body Area Networks (WBAN), standardized as IEEE 802.15.6, enable digital devices on/around the human body to communicate with one another. WBAN is essentially a person's piconet consisting of a master (mobile) device and several slave devices, which follows his/her mobility pattern, and hence, occasionally collides with another piconet as people meet or pass by. As such, a mechanism to detect collision and avoid interference is needed for intra-piconet communications. In this paper, we focus on this notorious problem of piconet collision and propose Distributed Time Division Piconet Coexistence (DTDPC) using local time offset exchange as a simple, attractive solution. The proposed DTDPC provides different level of services for various applications. Besides our simulation results have shown that the proposed solution outperforms the conventional CSMA protocols.

IEEE 802.15.6 표준인 무선 Body Area Networks (WBAN) 은 여러 디지털 장비들을 가지고 있는 사람과 사람간의 통신규약이다. WBAN 에서는 하나의 주 디바이스와 여러 개의 부 디바이스들을 가진 한 사람 단위로 피코넷이 구성 되며, 이 피코넷은 사람의 움직임에 따라 이동하게 되며, 다른 사람과 근처에 있게 되면 피코넷간의 충돌이 일어나게 된다. 따라서 이와 같은 충돌을 감지하고 간섭을 회피하는 일이 피코넷 내부 통신을 위하여 필요하게 된다. 이 논문에서는 피코넷 충돌에 관하여 논하며, 간단하며 유용한 로컬 오프셋을 이용한 분산시간 분리 피코넷 충돌회피 방법을 제시한다. 이 제시된 방법은 여러 응용(동영상, 보안, 의료 등)을 위하여 응용마다 다른 수준의 서비스를 제공하는 하게 되는 기능을 갖게 되며, 수행된 실험 결과는 전통적인 CSMA 에 비교하여 성능이 뒤지지 않음을 보인다.

Keywords

References

  1. K. S. Kwak, M.A. Ameen, D. Kwak, C. Lee, and H. Lee, "A study on proposed IEEE 802.15 WBAN MAC Protocols," in 2009 Proc. IEEE ISCIT, pp. 834-840, 2009.
  2. I. Ashraf, A. Gkelias, M. Dohler and A.H. Aghvami, "Time-synchronized multi-piconet Bluetooth environments," IEE Proc.-Commun., vol.153, No. 3, pp. 445-452, Jun 2006. https://doi.org/10.1049/ip-com:20050510
  3. G. Pasolini, "Analytical Investigation on the Coexistence of Bluetooth Piconets," IEEE Comm. Letters, vol. 8, no. 3, pp. 144-146, Mar. 2004. https://doi.org/10.1109/LCOMM.2004.825734
  4. T. Lin and Y. Tseng, "Collision Analysis for a Multi-Bluetooth Picocells Environment," IEEE Comm. Letters, vol. 7, no. 10, pp. 475-477, Oct. 2003. https://doi.org/10.1109/LCOMM.2003.817313
  5. A. El-Hoiydi, "Interference between Bluetooth Networks-Upper Bound on the Packet Error Rate," IEEE Comm. Letters, vol. 5, no. 6, pp. 245-247, Jun. 2001. https://doi.org/10.1109/4234.929601
  6. X. Hu, T. Park and K. G. Shin, "Attack-Tolerant Time-Synchronization in Wireless Sensor Networks," IEEE INFOCOM'2008, Phoenix, AZ, USA, April 2008.
  7. S. Rajagopal et. al, "Chaotic UWB based system design for ultra low power body area networks," IEEE Dallas Circuits and Systems Conference, DCAS 2009, Dallas, TX, USA, October 2009.
  8. S. Park et al, COMMUNICATION METHOD AND APPARATUS IN WIRELESS BODY AREA NETWORK, US Published Patent Application (#20090180780), 2009.
  9. S. Park et al, "Distributed TDMA Scheduling for SOP," contribution on IEEE P802.15.6, 2009.
  10. R. Patro et al, "Samsung MAC Proposal _Part 1: A power efficient MAC for BAN," contribution on IEEE P802.15.6, 2009.
  11. R. Patro et al, "Samsung MAC Proposal _Part 2: Coexistence, network management, security," contribution on IEEE P802.15.6, 2009.
  12. M. Deylami, "A Distributed Scheme to Manage The Dynamic Coexistence of IEEE 802.15.4-Based Health-Monitoring WBANs," IEEE Journal of Biomedical and Health Informatics, pp327-334, Aug. 2013. https://doi.org/10.5220/0004195403270330
  13. TG6 Technical Requirements Document (TRD), IEEE 802.15-08-0644-09-0006, http://www.ieee802.org/15/pub/TG6.html, Sep. 2008.