DOI QR코드

DOI QR Code

Embedding Algorithms Hypercube, HCN, and HFN into HFCube Interconnection Networks

상호연결망 HFCube와 하이퍼큐브, HCN, HFN 사이의 임베딩 알고리즘

  • Kim, Jong-Seok (Department of Computer Science, University of Rochester) ;
  • Lee, Hyeong-Ok (Department of Computer Education, Sunchon National University)
  • Received : 2014.04.23
  • Accepted : 2014.05.14
  • Published : 2014.06.30

Abstract

In this paper, we analyze emddings among HFCube(n,n), HCN(n,n), HFN(n,n) with lower network cost than that of Hypercube. The results are as follows. We propose that $Q_{2n}$ can be embedded into HFCube(n,n) with dilation 5, congestion 2. HCN(n,n) and HFN(n,n) are subgraphs of HFCube(n,n). HFCube(n,n) can be embedded into HFN(n,n) with dilation 3. HFCube(n,n) can be embedded into HCN(n,n) with dilation O(n). The results will be helpful to analyze several efficient properties in each interconnection network.

본 연구에서는 하이퍼큐브의 망비용을 개선한 계층적 상호연결망 HFCube(n,n), HCN(n,n), HFN(n,n)의 임베딩을 분석한다. 연구 결과는 다음과 같다. 하이퍼큐브 $Q_{2n}$는 HFCube(n,n)에 연장율 3, 밀집율 2에 임베딩 가능하다. HFCube(n,n)은 HFN(n,n)과 HCN(n,n)을 부그래프(subgraph)로 갖고 있다. HFCube(n,n)은 HFN(n,n)에 연장율 3에 사상 가능하고, HFCube(n,n)을 HCN(n,n)으로 임베딩 하는 연장율 비용은 O(n)임을 보인다. 이러한 결과는 각 연결망의 여러 가지 유용한 성질들을 분석하는데 도움이 될 것이다.

Keywords

References

  1. S. L. Johnsson and C.T. Ho, "Optimum broadcasting and personalized communication in hypercubes," IEEE Trans. Computers, vol. 38, no. 6, pp. 1249-1268, 1989. https://doi.org/10.1109/12.29465
  2. K. Hwang, Z. Xu, and M. Arakawa, "Benchmark evaluation of the IBM SP2 for parallel signal processing," IEEE Trans. Parallel and Distributed Systems, vol. 7, no. 5, pp 522-535, 1996. https://doi.org/10.1109/71.503777
  3. K. Day and A. Tripathi, "A comparative study of topological properties of hyprecubes and star graphs," IEEE Trans. Parallel and Distributed System, vol. 5, no. 1, pp. 31-38, 1994. https://doi.org/10.1109/71.262586
  4. D. A. Reed and H. D. Schwetman, "Cost-performance bounds for multimicrocomputer networks," IEEE Trans. Computers, vol. c-32, no. 1, pp. 83-95, 1983.
  5. W. D. Hillis, The connection machine, MIT Press, 1985.
  6. W. D. Hillis and L. W. Tucker, "The CM-5 connection machine: a scalable supercomputer," Communications of the ACM, vol. 36, pp. 30-40, 1993.
  7. nCUBE Corporation, nCUBE 2S Programmer's Reference Manual, 1992.
  8. S. F. Nugent, "The iPSC/2 direct-connect communications technology," in Proceedings of the 3rd International Conference on Hypercube Concurrent Computers and Applications, pp. 51-60, 1988.
  9. K. Ghose and K. R. Desai "Hierarchical cubic networks," IEEE Trans. Parallel Distributed Systems, vol.6, no.4, pp.427-436, 1995. https://doi.org/10.1109/71.372797
  10. D. R. Duh, G. H. Chen, and J. F. Fang: Algorithms and properties of a new two-level network with folded hypercubes as basic modules, IEEE Trans. Parallel Distributed Systems, vol. 6, no. 7, pp. 714-723, 1995. https://doi.org/10.1109/71.395400
  11. Y. Shi, Z. Hou, and J. Song, "Hierarchical Interconnection Networks with Folded Hypercubes as Basic Clusters", in Proceedings of the 4th International Conference on High-Performance Computing in the Asia-Pacific Region, pp.134-137, 2000.
  12. M. Kim, D.-W. Kim, and H.-O. Lee, "Embedding Algorithms for Star, Bubble-Sort, Rotator-Faber-Moore, and Pancake Graphs," in Proceedings of the 10th International Conference on Algorithms and Architectures for Parallel Processing, pp. 348-357, 2010.
  13. S. Ranka, J. Wang, and N. Yeh, "Embedding Meshes on the Star Graph," Journal of Parallel and Distributed Computing, vol. 19, pp. 131-135, 1993. https://doi.org/10.1006/jpdc.1993.1098
  14. H.-O. Lee, H. Sim, J.-H. Seo, and M. Kim, "Embedding Algorithms for Bubble-Sort, Macro-Star, and Transposition Graphs," in Proceedings of the 2010 IFIP International Conference on Network and Parallel Computing, pp. 134-143, 2010.
  15. W. Deng and Q. Luo, "Embedding Complete Binary Trees into Locally Twisted Cubes," Advanced Engineering Forum, vol. 6-7, pp. 70-75, 2012. https://doi.org/10.4028/www.scientific.net/AEF.6-7.70
  16. Q. Dong, J. Zhou, Y. Fu, and X. Yang, "Embedding a mesh of Trees in the Crossed Cube," Information Processing Letters, vol. 112, no. 14-15, pp. 599-603, 2012. https://doi.org/10.1016/j.ipl.2012.04.013
  17. El-Amawy. A. and S. Latifi, "Properties and performance of folded hypercubes," IEEE Trans. Parallel Distributed Systems, vol. 2, no. 1, pp. 31-42, 1991. https://doi.org/10.1109/71.80187