DOI QR코드

DOI QR Code

Synthesis of anisotropic defective polyaniline/silver nanocomposites

  • Kamblea, Vaishali (Bio-Inspired Materials Science Laboratory, Department of Chemistry, University of Pune) ;
  • Kodwania, Gunjan (Bio-Inspired Materials Science Laboratory, Department of Chemistry, University of Pune) ;
  • Sridharkrishna, Ramdoss (Bio-Inspired Materials Science Laboratory, Department of Chemistry, University of Pune) ;
  • Ankamwar, Balaprasad (Bio-Inspired Materials Science Laboratory, Department of Chemistry, University of Pune)
  • Received : 2014.01.27
  • Accepted : 2014.06.16
  • Published : 2014.06.25

Abstract

The chemical synthesis of anisotropic defective polyaniline/Ag composite (PANI/Ag) is explored using silver nitrate ($AgNO_3$) as the precursor material. This study provides a simple method for the formation of PANI/Ag nanocomposites at two different aniline concentrations $5{\mu}l$ (PANC5) and $10{\mu}l$ (PANC10). The composite PANC5 exhibits UV-Visible absorption peaks at 436 nm and 670 nm whereas, PANC10 exhibits absorption peaks at 446 nm and 697 nm. This shift is caused by the strong interaction between polyaniline and silver. The characterized FTIR peaks observed at around $3410cm^{-1}$ (PANC5) and $3420cm^{-1}$ (PANC10) was due to the N-H stretching vibrations. The appearance of a broad band instead of a sharp peak can be attributed due to the presence of a high concentration of N-H groups in the nanocomposite. The TEM images show that the sample contains defective spherical, truncated triangular and rod shaped particles. The results showed that the PANI/Ag nanocomposites are composed of nano-sized particles of 43-53 nm that contain Ag domains of 33-37 nm with polymer thickness 5.7-11.2 nm at two different aniline concentrations.

Keywords

References

  1. Ankamwar, B., Mandal, G., Sur, U.K. and Ganguly, T. (2012), "An effective biogenic protocol for room temperature one step synthesis of defective nanocrystalline silver nanobuns using leaf extract", Dig. J. Nanomater. Biostruct., 7(2), 599-605.
  2. Correa, C.M., Faez, R., Bizeto, M.A. and Camilo, F.F. (2012),"One-pot synthesis of a polyaniline-silver nanocomposite prepared in ionic liquid", RSC Adv., 2, 3088-3093. https://doi.org/10.1039/c2ra00992g
  3. Choudhury, A. (2009), "Polyaniline/Silver nanocomposites: Dielectric properties and ethanol vapour sensitivity", Sens. Actuat. B., 138, 318-325. https://doi.org/10.1016/j.snb.2009.01.019
  4. Gould, I.R., Lenhard, J.R., Muenter, AA., Godleski, S.A. and Farid, S. (2000), "Two electron sensitaization: a new concept for silver halide photography", J. Am. Chem. Soc., 122, 11934-11943. https://doi.org/10.1021/ja002274s
  5. Greenwood, N.N. and Earnshaw, A. (1997), Chemistry of the Elements, 2nd Edition, Oxford.
  6. Gangopadhyay, R., De, A. and Ghosh, G. (2001), "Polyaniline-poly(vinyl alcohol) conducting composite: material wit easy processability and new novel application potential", Synth. Met., 123, 21-31. https://doi.org/10.1016/S0379-6779(00)00573-7
  7. Hasik, M., Drelinkiewicz, A., Wenda, E., Paluszkiewicz, C. and Quillard, S. (2001), "FTIR spectroscopic investigation of polyaniline derivatives-palladium systems", J. Mol. Struct., 596, 89-99. https://doi.org/10.1016/S0022-2860(01)00694-9
  8. Karami, H., Mousavi, M.F. and Shamsipur, M. (2003), "A new design for dry polyaniline rechargeable batteries", J. Power Source., 117, 255-259. https://doi.org/10.1016/S0378-7753(03)00168-X
  9. Khanna, P.K., Singh, N., Charan, C. and Viswanath, A. (2005), "Synthesis of Ag/Polyaniline nanocomposite via an in situ photo redox mechanism", Mater. Chem. Phys., 92(1), 214-219. https://doi.org/10.1016/j.matchemphys.2005.01.011
  10. Karim, M.R., Yeum, J.H., Lee, M.Y., Lee, M.S. and Lim, K.T. (2009), "UV-curving synthesis of sulfonated polyaniline-silver nanocomposites by an in-situ reduction method", Polym. Adv. Technol., 20, 639-644. https://doi.org/10.1002/pat.1317
  11. Khan, J.A., Qasim, M., Singh, B.R., Singh, S., Shoeb, M., Khan, W., Das, D. and Naqvi, A.H. (2013), "Synthesis and characterization of structural, optical, thermal and dielectric properties of polyaniline/$CoFe_{2}O_{4}$ nanocomposites with special reference to photocatalytic activity", Spectrochim. Acta. A Mol. Biomol. Spectros., 109, 313-321. https://doi.org/10.1016/j.saa.2013.03.011
  12. Lin, J.C. and Wang, C.Y. (1996), "Effects of surface treatment of silver powder on rheology of its thick-film paste", Mater. Chem. Phys., 45, 136-144. https://doi.org/10.1016/0254-0584(96)80091-5
  13. Lee, M., Kim, B.W., Nam, J.D., Lee, Y., Son, Y. and Seo, S.J. (2003), "In-situ formation of gold nanoparticle/conducting polymer nanocomposites", Mol. Cryst. Liq. Cryst., 407, 397-402.
  14. Leroux, Y., Eang, E., Fave, C., Trippe, G. and Lacroix, J.C. (2007), "Conduvting polymer/gold naonparticle hybrid materials: A step toward electro active plasmonic devices", Electrochem. Commun., 9, 1258-1262. https://doi.org/10.1016/j.elecom.2007.01.015
  15. Pillalamarri, S.K., Blum, D.F., Tokuhiro, T.A. and Bertino, M.F. (2005), "One-pot synthesis of Polyanilinemetal nanocomposites", Chem. Mater., 17, 5941-5944. https://doi.org/10.1021/cm050827y
  16. Sun, Y. and Xia, Y. (2002), "Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process", Adv. Mater., 14, 833-837. https://doi.org/10.1002/1521-4095(20020605)14:11<833::AID-ADMA833>3.0.CO;2-K
  17. Shiv Shankar, S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A. and Sastry, M. (2004), "Biological synthesis of triangular gold nanoprisms", Nature Mater., 3, 482-488. https://doi.org/10.1038/nmat1152
  18. Stejskal, J. (2013), "Conducting polymer-silver composites", Chem. Pap., 67(8), 814-848. https://doi.org/10.2478/s11696-012-0304-6
  19. Tamboli, M.S., Kulkarni, M.V., Patil, R.H., Gade, W.N., Navale, S.C. and Kale, B.B. (2012), "Nanowires of silver-Polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent", Colloids Surf. B.: Biointerf., 92, 35-41. https://doi.org/10.1016/j.colsurfb.2011.11.006
  20. Wessling, B. (1994), "Passivation of metals by coating with polyaniline: corrosion potential shift and morphological changes", Adv. Mater., 6(3), 226-228. https://doi.org/10.1002/adma.19940060309
  21. Wang, Y. and Toshima, N. (1997), "Preparation of Pd-Pt bimetallic colloids with controllable core/sell structures", J. Phys. Chem. B., 101, 5301-5306. https://doi.org/10.1021/jp9704224
  22. Wang, W. and Asher, S. (2001), "A photochemical incorporation of silver quantum dots in monodisperse silica colloids for photonic crystal applications", J. Am. Chem. Soc., 123, 12528-12535. https://doi.org/10.1021/ja011262j
  23. Wang, Y. and Jing, X. (2004), "Intrinsically conducting polymers for electromagnetic interference shielding", Polym. Adv. Technol., 16, 344-351.
  24. Wang, H.L., Li, W.G., Jia, Q. X. and Akhadov, E. (2007), "Tailoring conducting polymer chemistry for the chemical deposition of metal particles and clusters", Chem. Mater., 19, 520-525. https://doi.org/10.1021/cm0619508

Cited by

  1. Synthesis and characterization of polyamide thin-film nanocomposite membrane containing ZnO nanoparticles vol.6, pp.4, 2015, https://doi.org/10.12989/mwt.2015.6.4.309
  2. Electrical Conductivity and Ion Exchange Properties of Polyaniline Antimony Tin Tung state Nano composite vol.37, pp.2, 2014, https://doi.org/10.13005/ojc/370218