References
- Aparna, R., Srinivas, V., Ram, S., de Toro, J.A. and Mizutani, U. (2005), "Structure and magnetic properties of oxygen-stabilized tetragonal Ni nanoparticles prepared by borohydride reduction method", Phys. Rev. B, 71, 184443. https://doi.org/10.1103/PhysRevB.71.184443
- Chen, C.S., Wu, J.H. and Lai, T.W. (2010), "Carbon dioxide hydrogenation on Cu nanoparticles", J. Phys. Chem. C, 114, 15021-15028. https://doi.org/10.1021/jp104890c
- Crooks, R.M., Zhao, M.Q., Sun, L., Chechik, V. and Yeung, L.K. (2001), "Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis", Acc. Chem. Res., 34, 181-190. https://doi.org/10.1021/ar000110a
- Filipe, V., Hawe, A. and Jiskoot, W. (2010), "Critical evaluation of Nanoparticle Tracking Analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates", Pharm. Res., 27, 796-810. https://doi.org/10.1007/s11095-010-0073-2
-
Fuldner, S., Mild, R., Siegmund, H.I., Schroeder, J.A., Gruber, M. and Konig, B. (2010), "Green-light photocatalytic reduction using dye-sensitized
$TiO_{2}$ and transition metal nanoparticles", Green Chem., 12, 400-406. https://doi.org/10.1039/b918140g - Hou, Y., Kondoh, H., Ohta, T. and Gao, S. (2005), "Size-controlled synthesis of nickel nanoparticles", Appl. Surf. Sci., 241, 218-222. https://doi.org/10.1016/j.apsusc.2004.09.045
- Kowlgi, K.N.K., Koper, G.J.M., Picken, S.J., Lafont, U., Zhang, L. and Norder, B. (2011), "Synthesis of Magnetic Noble Metal (Nano) Particles", Langmuir, 27, 7783-7787. https://doi.org/10.1021/la105051v
- Metin, O ., Mazumder, V., O zkar, S. and Sun, S.H. (2010), "Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane", J. Am. Chem. Soc., 132, 1468-1469. https://doi.org/10.1021/ja909243z
- Moreno-Manas, M. and Pleixats, R. (2003), "Formation of carbon-carbon bonds under catalysis by Transition-Metal Nanoparticles", Acc. Chem. Res., 36, 638-643. https://doi.org/10.1021/ar020267y
- Narayanan, R. and El-Sayed, M.A. (2005), "Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability", J. Phys. Chem. B, 109, 12663-12676. https://doi.org/10.1021/jp051066p
- Nikonova, O., Nedelec, J.M., Kessler, V.G. and Seisenbaeva, G.A. (2011), "Precursor-directed assembly of complex oxide nanobeads. The role of strongly coordinated inorganic anions", Langmuir, 27, 11622-11628. https://doi.org/10.1021/la2028719
- Pazik, R., Andersson, R., Kepinski, L., Kessler, V.G., Nedelec, J.M. and Seisenbaeva, G.A. (2011), "Surface functionalization of metal oxide nanoparticles with biologically active molecules containing phosphonate moieties", J. Phys. Chem. C, 115, 9850-9860. https://doi.org/10.1021/jp2000656
-
Pazik, R., Piasecka, E., Malecka, M., Kessler, V.G., Idzikowski, B., Sniadecki, Z. and Wiglusz, R.J. (2013), "Facile non-hydrolytic synthesis of highly water dispersible, surfactant free nanoparticles of synthetic
$MFe_{2}O_{4} (M - Mn^{2+}, Fe^{2+}, Co^{2+}, Ni^{2+})$ ferrite spinel by a modified Bradley reaction", RSC Adv., 3, 12230-12243. https://doi.org/10.1039/c3ra40763b - Pazik, R., Tekoriute, R., Hakansson, S., Wiglusz, R., Strek, W., Siesenbaeva, G.A., Gun'ko, Y.K. and Kessler, V.G. (2009), "Precursor and solvent effects in the non-hydrolytic synthesis of complex oxide nanoparticles for bio-imaging applications by the ether elimination (Bradley) reaction", Chem. Eur. J., 15, 6820-6826. https://doi.org/10.1002/chem.200900836
- Qi, L.M., Ma, J.M. and Shen, J.L. (1997), "Synthesis of copper nanoparticles in nonionic water-in-oil microemulsions", J. Colloid Interface Sci., 186, 498-500. https://doi.org/10.1006/jcis.1996.4647
- Robinson, I., Volk, M., Tung, L.D., Caruntu, G., Kay, N. and Thanh, N.T.K. (2009), "Synthesis of Co nanoparticles by pulsed laser irradiation of cobalt carbonyl in organic solution", J. Phys. Chem. C, 113, 9497-9501. https://doi.org/10.1021/jp9014564
- Robinson, I., Zacchini, S., Tung, L.D., Maenosono, S. and Thanh N.T.K. (2009), "Synthesis and characterization of magnetic nanoalloys from bimetallic carbonyl clusters", Chem. Mater., 21, 3021-3026. https://doi.org/10.1021/cm9008442
- Roucoux, A., Schulz, J. and Patin, H. (2002), "Reduced transition metal colloids: a novel family of reusable catalysts?", Chem. Rev., 102, 3757-3778. https://doi.org/10.1021/cr010350j
- Schaadt, D.M., Feng, B. and Yu, E.T. (2005), "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles", Appl. Phys. Lett., 86, 063106. https://doi.org/10.1063/1.1855423
- Shin, N.C., Lee, Y.H., Shin, Y.H., Kim, J., and Lee, Y.W. (2010), "Synthesis of cobalt nanoparticles in supercritical methanol", Mater. Chem. Phys., 124, 140-144. https://doi.org/10.1016/j.matchemphys.2010.06.005
-
Werndrup, P., Kessler, V.G., Gohil, S., Kritikos, M. and Hubert-Pfalzgraf, L.G. (2001), "Isolation and X-ray single crystal study of volatile homo- and heterometallic aminoalkxide complexes of nickel(II):
$Ni({\mu}_{2}-OR^{N})_{2}$ ,$Ni({\mu}_{2}-OR^{N})_{2}{\cdot}C_{7}H_{8}$ and$Ni(Ni_{0.25}Cu_{0.75})_{2}({\mu}_{3}-OH)({\mu}_{2}-OAc)(OAc)_{2}({\mu}_{2}{\eta}_{2}-OR^{N})_{3}({\mu}_{2}-R^{N}OH)$ ,$R^{N}=CHMeCH_{2}NMe_{2}$ ", Polyhedron, 20, 2163-2169. https://doi.org/10.1016/S0277-5387(01)00814-2 - Wilkinson, K., Palmberg, L., Kupczyk, M., Fadeel, B., Gerde P., Seisenbaeva, G.A., Dahlen, S.E. and Kessler V.G. (2011), "Solution engineered Pd nanoparticles: models for health effect studies of automotive particulate polution", ACS Nano, 5, 5312-5324. https://doi.org/10.1021/nn1032664
Cited by
- Shape- and size-controlled synthesis of noble metal nanoparticles vol.3, pp.4, 2014, https://doi.org/10.12989/amr.2014.3.4.199
- Adapting the concepts of nonaqueous sol-gel chemistry to metals: synthesis and formation mechanism of palladium and palladium-copper nanoparticles in benzyl alcohol vol.95, pp.3, 2014, https://doi.org/10.1007/s10971-020-05278-z