DOI QR코드

DOI QR Code

Novel solvothermal approach to hydrophilic nanoparticles of late transition elements and its evaluation by nanoparticle tracking analysis

  • Dutilleul, Marion Collart (Ecole National Superiore de Chimie de Clermont Ferrand) ;
  • Seisenbaeva, Gulaim A. (Department of Chemistry, Biocenter, Swedish University of Agricultural Sciences) ;
  • Kessler, Vadim G. (Department of Chemistry, Biocenter, Swedish University of Agricultural Sciences)
  • Received : 2013.07.17
  • Accepted : 2014.03.05
  • Published : 2014.06.25

Abstract

Solvothermal treatment of late transition metal acetylacetonates in a novel medium composed either of pure acetophenone or acetophenone mixtures with amino alcohols offers a general approach to uniform hydrophilic metal nanoparticles with high crystallinity and low degree of aggregation. Both pure metal and mixed-metal particles can be accesses by this approach. The produced materials have been characterized by SEM-EDS, TEM, FTIR in the solid state and by Nanoparticle Tracking Analysis in solutions. The chemical mechanisms of the reactions producing nanoparticles has been followed by NMR. Carrying out the process in pure acetophenone produces palladium metal, copper metal with minor impurity of $Cu_2O$, and NiO. The synthesis starting from the mixtures of Pd and Ni acetylacetonates with up to 20 mol% of Pd, renders in minor yield the palladium-based metal alloy along with nickel oxide as the major phase. Even the synthesis starting from a mixed solution of $Cu(acac)_2$ and $Ni(acac)_2$ produces oxides as major products. The situation is improved when aminoalcohols such as 2-aminoethanol or 2-dimethylamino propanol are added to the synthesis medium. The particles in this case contain metallic elements and pairs of individual metals (not metal alloys) when produced from mixed precursor solutions in this case.

Keywords

References

  1. Aparna, R., Srinivas, V., Ram, S., de Toro, J.A. and Mizutani, U. (2005), "Structure and magnetic properties of oxygen-stabilized tetragonal Ni nanoparticles prepared by borohydride reduction method", Phys. Rev. B, 71, 184443. https://doi.org/10.1103/PhysRevB.71.184443
  2. Chen, C.S., Wu, J.H. and Lai, T.W. (2010), "Carbon dioxide hydrogenation on Cu nanoparticles", J. Phys. Chem. C, 114, 15021-15028. https://doi.org/10.1021/jp104890c
  3. Crooks, R.M., Zhao, M.Q., Sun, L., Chechik, V. and Yeung, L.K. (2001), "Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis", Acc. Chem. Res., 34, 181-190. https://doi.org/10.1021/ar000110a
  4. Filipe, V., Hawe, A. and Jiskoot, W. (2010), "Critical evaluation of Nanoparticle Tracking Analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates", Pharm. Res., 27, 796-810. https://doi.org/10.1007/s11095-010-0073-2
  5. Fuldner, S., Mild, R., Siegmund, H.I., Schroeder, J.A., Gruber, M. and Konig, B. (2010), "Green-light photocatalytic reduction using dye-sensitized $TiO_{2}$and transition metal nanoparticles", Green Chem., 12, 400-406. https://doi.org/10.1039/b918140g
  6. Hou, Y., Kondoh, H., Ohta, T. and Gao, S. (2005), "Size-controlled synthesis of nickel nanoparticles", Appl. Surf. Sci., 241, 218-222. https://doi.org/10.1016/j.apsusc.2004.09.045
  7. Kowlgi, K.N.K., Koper, G.J.M., Picken, S.J., Lafont, U., Zhang, L. and Norder, B. (2011), "Synthesis of Magnetic Noble Metal (Nano) Particles", Langmuir, 27, 7783-7787. https://doi.org/10.1021/la105051v
  8. Metin, O ., Mazumder, V., O zkar, S. and Sun, S.H. (2010), "Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane", J. Am. Chem. Soc., 132, 1468-1469. https://doi.org/10.1021/ja909243z
  9. Moreno-Manas, M. and Pleixats, R. (2003), "Formation of carbon-carbon bonds under catalysis by Transition-Metal Nanoparticles", Acc. Chem. Res., 36, 638-643. https://doi.org/10.1021/ar020267y
  10. Narayanan, R. and El-Sayed, M.A. (2005), "Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability", J. Phys. Chem. B, 109, 12663-12676. https://doi.org/10.1021/jp051066p
  11. Nikonova, O., Nedelec, J.M., Kessler, V.G. and Seisenbaeva, G.A. (2011), "Precursor-directed assembly of complex oxide nanobeads. The role of strongly coordinated inorganic anions", Langmuir, 27, 11622-11628. https://doi.org/10.1021/la2028719
  12. Pazik, R., Andersson, R., Kepinski, L., Kessler, V.G., Nedelec, J.M. and Seisenbaeva, G.A. (2011), "Surface functionalization of metal oxide nanoparticles with biologically active molecules containing phosphonate moieties", J. Phys. Chem. C, 115, 9850-9860. https://doi.org/10.1021/jp2000656
  13. Pazik, R., Piasecka, E., Malecka, M., Kessler, V.G., Idzikowski, B., Sniadecki, Z. and Wiglusz, R.J. (2013), "Facile non-hydrolytic synthesis of highly water dispersible, surfactant free nanoparticles of synthetic $MFe_{2}O_{4} (M - Mn^{2+}, Fe^{2+}, Co^{2+}, Ni^{2+})$ ferrite spinel by a modified Bradley reaction", RSC Adv., 3, 12230-12243. https://doi.org/10.1039/c3ra40763b
  14. Pazik, R., Tekoriute, R., Hakansson, S., Wiglusz, R., Strek, W., Siesenbaeva, G.A., Gun'ko, Y.K. and Kessler, V.G. (2009), "Precursor and solvent effects in the non-hydrolytic synthesis of complex oxide nanoparticles for bio-imaging applications by the ether elimination (Bradley) reaction", Chem. Eur. J., 15, 6820-6826. https://doi.org/10.1002/chem.200900836
  15. Qi, L.M., Ma, J.M. and Shen, J.L. (1997), "Synthesis of copper nanoparticles in nonionic water-in-oil microemulsions", J. Colloid Interface Sci., 186, 498-500. https://doi.org/10.1006/jcis.1996.4647
  16. Robinson, I., Volk, M., Tung, L.D., Caruntu, G., Kay, N. and Thanh, N.T.K. (2009), "Synthesis of Co nanoparticles by pulsed laser irradiation of cobalt carbonyl in organic solution", J. Phys. Chem. C, 113, 9497-9501. https://doi.org/10.1021/jp9014564
  17. Robinson, I., Zacchini, S., Tung, L.D., Maenosono, S. and Thanh N.T.K. (2009), "Synthesis and characterization of magnetic nanoalloys from bimetallic carbonyl clusters", Chem. Mater., 21, 3021-3026. https://doi.org/10.1021/cm9008442
  18. Roucoux, A., Schulz, J. and Patin, H. (2002), "Reduced transition metal colloids: a novel family of reusable catalysts?", Chem. Rev., 102, 3757-3778. https://doi.org/10.1021/cr010350j
  19. Schaadt, D.M., Feng, B. and Yu, E.T. (2005), "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles", Appl. Phys. Lett., 86, 063106. https://doi.org/10.1063/1.1855423
  20. Shin, N.C., Lee, Y.H., Shin, Y.H., Kim, J., and Lee, Y.W. (2010), "Synthesis of cobalt nanoparticles in supercritical methanol", Mater. Chem. Phys., 124, 140-144. https://doi.org/10.1016/j.matchemphys.2010.06.005
  21. Werndrup, P., Kessler, V.G., Gohil, S., Kritikos, M. and Hubert-Pfalzgraf, L.G. (2001), "Isolation and X-ray single crystal study of volatile homo- and heterometallic aminoalkxide complexes of nickel(II): $Ni({\mu}_{2}-OR^{N})_{2}$, $Ni({\mu}_{2}-OR^{N})_{2}{\cdot}C_{7}H_{8}$ and $Ni(Ni_{0.25}Cu_{0.75})_{2}({\mu}_{3}-OH)({\mu}_{2}-OAc)(OAc)_{2}({\mu}_{2}{\eta}_{2}-OR^{N})_{3}({\mu}_{2}-R^{N}OH)$, $R^{N}=CHMeCH_{2}NMe_{2}$", Polyhedron, 20, 2163-2169. https://doi.org/10.1016/S0277-5387(01)00814-2
  22. Wilkinson, K., Palmberg, L., Kupczyk, M., Fadeel, B., Gerde P., Seisenbaeva, G.A., Dahlen, S.E. and Kessler V.G. (2011), "Solution engineered Pd nanoparticles: models for health effect studies of automotive particulate polution", ACS Nano, 5, 5312-5324. https://doi.org/10.1021/nn1032664

Cited by

  1. Shape- and size-controlled synthesis of noble metal nanoparticles vol.3, pp.4, 2014, https://doi.org/10.12989/amr.2014.3.4.199
  2. Adapting the concepts of nonaqueous sol-gel chemistry to metals: synthesis and formation mechanism of palladium and palladium-copper nanoparticles in benzyl alcohol vol.95, pp.3, 2014, https://doi.org/10.1007/s10971-020-05278-z