DOI QR코드

DOI QR Code

다면체 유한요소의 형상함수 개발에 관한 연구

A Study on the Development of Shape Functions of Polyhedral Finite Elements

  • 김현규 (서울과학기술대학교 기계자동차공학과)
  • Kim, Hyun-Gyu (Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology)
  • 투고 : 2014.04.02
  • 심사 : 2014.05.21
  • 발행 : 2014.06.30

초록

본 연구에서는 다면체 요소의 개발을 위하여 Wachspress 좌표계와 이동최소자승 근사를 기반으로하는 형상함수와 수치적분 방법을 제시하고 있다. 사면체 요소를 사면체 영역으로 분할하여 형상함수가 구성이 되고 이 영역을 사용한 일관성있는 수치적분이 수행되게 된다. 다면체 요소 면에서 Wachspress 좌표계를 사용하고 요소 내부에서 라플라스 방정식을 적용하여 이동최소자승 근사의 가중함수를 정의하게 된다. 본 연구에서 개발되는 다면체 요소의 형상함수와 수치적분 방법은 일반적인 유한요소와 유사한 특성을 갖게 되는데 수치 예제를 통하여 유효성을 보여주었다.

In this paper, a polyhedral element is presented to solve three-dimensional problems by developing shape functions based on Wachspress coordinates and moving least square approximation. A subdivision of polyhedrons into tetrahedral domains is performed for the construction of shape functions of polyhedral elements, and numerical integration of the weak form is carried out consistently over the tetrahedral domains. The weight functions for moving least square approximation are defined by solving Laplace equation with boundary values based on Wachspress coordinates on polyhedral element faces. Polyhedral elements presented in this paper have similar properties to conventional finite element regarding the continuity, the completeness, the node-element connectivity and the inter-element compatibility. Numerical examples show the effectiveness of the present method for solving three-dimensional problems using polyhedral elements.

키워드

참고문헌

  1. Floater, M.S. (2003) Mean Value Coordinates, Comput. Aided Geom. Des., 20, pp.19-27. https://doi.org/10.1016/S0167-8396(03)00002-5
  2. Gustafsson, B., Putinar, M. (1999) On Exact Quadrature Formulas for Harmonic Functions on Polyhedral, Proceedings of the American Mathematics Society, 128, pp.1427-1432.
  3. Idelsohn, S.R., Onate, E., Calvo, N., Pin, F.D. (2003) The Meshless Finite Element Method, International Journal for Numerical Methods in Engineering, 58, pp.893-912. https://doi.org/10.1002/nme.798
  4. Ju, T., Liepa, P., Warren, J. (2007) A General Geometric Construction of Coordinates in a Convex Simplicial Polytope, Computer Aided Geometric Design, 24, pp.161-178. https://doi.org/10.1016/j.cagd.2006.12.001
  5. Kim, H.G. (2002) Interface Element Method (IEM) for a Partitioned System with Non-Matching Interfaces, Computer Methods in Applied Mechanics and Engineering, 191, pp.3165-3194. https://doi.org/10.1016/S0045-7825(02)00255-4
  6. Kim, H.G. (2008) Development of Three-Dimensional Interface Elements for Coupling of Non-Matching Hexahedral Meshes, Computer Methods in Applied Mechanics and Engineering, 197, pp.3870-3882. https://doi.org/10.1016/j.cma.2008.03.023
  7. Mousavi, S.E., Sukumar, N. (2011) Numerical Integration of Polynomials and Discontinuous Functions on Irregular Convex Polygons and Polyhedrons, Computational Mechanics, 47, pp.535-554. https://doi.org/10.1007/s00466-010-0562-5
  8. Rashid, M.M., Sadri, A. (2012) The Partitioned Element Method in Computational Solid Mechanics, Computer Methods in Applied Mechanics and Engineering, 237-240, pp.152-165. https://doi.org/10.1016/j.cma.2012.05.014
  9. Rashid, M.M., Selimotic, M. (2006) A Three-Dimensional Finite Element Method with Arbitrary Polyhedral Elements, International Journal for Numerical Methods in Engineering, 67, pp.226-252. https://doi.org/10.1002/nme.1625
  10. Shepherd, J.F., Johnson, C.R. (2008) Hexahedral Mesh Generation Constraints, Engineering Computations, 24, pp.195-213. https://doi.org/10.1007/s00366-008-0091-4
  11. Si, H. (2007) Tetgen: a Quality Tetrahedral Mesh Generator and Three Dimensional Delaunay triangulation, Available from http://tetgen.berlios.de.
  12. Sohn, D., Cho, Y.-S., Im, S. (2012) A Novel Scheme to Generate Meshes with Hexahedral Elements and Poly-Pyramid Elements: The carving technique, Computer Methods in Applied Mechanics and Engineering, 201-204, pp.208-229. https://doi.org/10.1016/j.cma.2011.09.002
  13. Sudhakar, Y., Wall, W.A. (2013) Quadrature Schemes for Arbitrary Convex/concave Volumes and Integration of Weak form in Enriched Partition of Unity Methods, Computer Methods in Applied Mechanics and Engineering, 258, pp.39-54. https://doi.org/10.1016/j.cma.2013.01.007
  14. Sukumar N. Tabarraei, A. (2004) Conformal Polygonal Finite Elements, International Journal for Numerical Methods in Engineering, 61, pp.2045-2066. https://doi.org/10.1002/nme.1141
  15. Sukumar, N., Moran, B., Belytschko T. (1998) The Natural Element Method in Solid Mechanics, International Journal for Numerical Methods in Engineering, 43, pp.839-887. https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R
  16. Tautges, T.J. (2001) The Generation of Hexahedral Meshes for Assembly Geometry: Survey and Progress, International Journal for Numerical Methods in Engineering, 50, pp.2617-2642. https://doi.org/10.1002/nme.139
  17. Wachspress, E.L. (1975) A Rational Finite Element Basis, Academic Press, New York.
  18. Warren, J. (1996) Barycentric Coordinates for Convex Polytopes, Advances in Computational Mathematics, 6, pp.97-108. https://doi.org/10.1007/BF02127699
  19. Wicke, M., Botsch, M., Gross, M. (2007) A Finite Element Method on Convex Polyhedral, Computer Graphics Forum (Eurographics), 26, pp.355-364. https://doi.org/10.1111/j.1467-8659.2007.01058.x
  20. Zhang, Y., Hughes, T.J.R., Bajaj, C.L. (2010) An Automatic 3D Mesh Generation Method for Domains with Multiple Materials, Computer Methods in Applied Mechanics and Engineering, 199, pp.405-415. https://doi.org/10.1016/j.cma.2009.06.007

피인용 문헌

  1. Periodic Mesh Generation for Composite Structures using Polyhedral Finite Elements vol.27, pp.4, 2014, https://doi.org/10.7734/COSEIK.2014.27.4.239