References
- Delagrave, A., Marchand, J., Ollivier, J.P., Julien, S. and Hazrati, K. (1997), "Chloride binding capacity of various hydrated cement paste systems", Cement Concrete Compos., 6(1), 28-35.
- Glass, G.K. and Buenfeld, N.R. (2000), "The influence of chloride binding on the chloride induced corrosion risk in reinforced concrete", Corrosion Sci., 42(2), 329-344. https://doi.org/10.1016/S0010-938X(99)00083-9
- Hirao, H., Yamada, K., Takahashi, H. and Zibara, H. (2005), "Chloride binding of cement estimated by binding isotherms of hydrates", J. Adv. Concrete Tech., 3(1), 77-84. https://doi.org/10.3151/jact.3.77
- Johannesson, B., Yamada, K. and Nilsson, L.O. (2007), "Multi-species ionic diffusion in concrete with account to interaction between ions in the pore solution and the cement hydrates", Mater. Struct., 40, 651-665. https://doi.org/10.1617/s11527-006-9176-y
- Matschei T., Lothenbach, B. and Glasser, F.P. (2007), "The AFm phase in Portland cement", Cement Concrete Res, 37(2), 118-130. https://doi.org/10.1016/j.cemconres.2006.10.010
- Nielsen, E.P., Herfort, D. and Geiker, M.R. (2005), "Binding of chloride and alkalis in Portland cement systems", Cement Concrete Res., 35(1), 117-123. https://doi.org/10.1016/j.cemconres.2004.05.026
- Sandberg, P. (1999), "Studies of chloride binding in concrete exposed in a marine environment", Cement Concrete Res., 29(4), 473-477. https://doi.org/10.1016/S0008-8846(98)00191-4
- Luo, R., Cai, Y., Wang, C. and Huang, X. (2003), "Study of chloride binding and diffusion in GGBS concrete", Cement Concrete Res., 33(1), 1-7. https://doi.org/10.1016/S0008-8846(02)00712-3
- Saeki, T., Ueki, S. and Shima, T. (2002), "A model for predicting the deterioration of concrete due to the compound influence of salt damage and carbonation", Concrete library Int., 40, 269-282.
- Suryavanshi, A.K., Scantlebury, J.D. and Lyon, S.B. (1996), "Mechanism of Friedel's salt formation in cements rich in Tri-Calcium Aluminate", Cement Concrete Res., 26(5), 717-727. https://doi.org/10.1016/S0008-8846(96)85009-5
- Tang, L. and Nilsson, L.O. (1993), "Chloride binding capacity and binding isotherms of OPC pastes and mortars", Cement Concrete Res., 23(2), 247-253. https://doi.org/10.1016/0008-8846(93)90089-R
- Taylor, H.F.W. (1990), Cement Chemistry, Academic Press, London, UK.
- Termkhajornkit, P., Nawa, T., Nakai, M. and Saito, T. (2005), "Effect of fly ash on autogenous shrinkage", Cement Concrete Res., 35(3), 473-482. https://doi.org/10.1016/j.cemconres.2004.07.010
- Tran, M.V., Stitmannaithum, B. and Nawa, T. (2009), "Simulation of chloride penetration into concrete structures subjected to both cyclic flexural loads and tidal effects", Comput. Concr., 6(5), 421-435. https://doi.org/10.12989/cac.2009.6.5.421
- Wang, L. and Ueda, T. (2011), "Mesoscale simulation of chloride diffusion in concrete considering the binding capacity and concentration dependence", Comput. Concr., 8(2), 125-142. https://doi.org/10.12989/cac.2011.8.2.125
Cited by
- Prediction of chloride binding isotherms for blended cements vol.17, pp.5, 2016, https://doi.org/10.12989/cac.2016.17.5.655
- Chloride diffusion in concrete associated with single, dual and multi cation types vol.17, pp.1, 2016, https://doi.org/10.12989/cac.2016.17.1.053
- Structure, orientation, and dynamics of water-soluble ions adsorbed to basal surfaces of calcium monosulfoaluminate hydrates vol.20, pp.38, 2018, https://doi.org/10.1039/C8CP03872D
- Chloride resistance and binding capacity of cementitious materials containing high volumes of fly ash and slag vol.73, pp.2, 2014, https://doi.org/10.1680/jmacr.19.00163