DOI QR코드

DOI QR Code

Leaf anatomy of Pinus thunbergii Parl. (Pinaceae) collected from different regions of Korea

곰솔의 잎 해부 형태

  • Ghimire, Balkrishna (Department of Applied Plant Science and Oriental Bio-herb Research Institute, Kangwon National University) ;
  • Kim, Muyeol (Department of Biological Science, Chonbuk National University) ;
  • Lee, Jeong-Ho (Korea Forest Seed & Variety Center, Korea Forest Service) ;
  • Heo, Kweon (Department of Applied Plant Science and Oriental Bio-herb Research Institute, Kangwon National University)
  • ;
  • 김무열 (전북대학교 생명과학과) ;
  • 이정호 (국립산림품종관리센터) ;
  • 허권 (강원대학교 식물자원응용공학과)
  • Received : 2014.04.15
  • Accepted : 2014.05.30
  • Published : 2014.06.30

Abstract

Leaf anatomical study of Pinus thunbergii collected from 12 different coastal regions of Korea was conducted to understand the adaptive variation on leaf traits. Basic anatomical features are typical pine needle type with fibrous epidermis, 2-3 layered hypodermis, sunken stomata, monomorphic mesophyll, and well-represented bundle sheath. The bundle sheath surrounds a couple of vascular bundle separated by parenchyma bands. On the basis of their position, the resin ducts are of three types; external, medial and internal of the bundle sheath. The total number of resin ducts in all samples varies from 4 to 12. The stomata were found on stomatal bands throughout the leaf surface. Important dissimilarities observed on P. thunburgii leaf are the number and position of resin ducts and the number of stomata rows in leaf surface.

곰솔의 지역간 잎 형태 변이를 이해하기 위하여 한반도의 해안지역 12군데에서 채집한 곰솔의 잎 해부형태를 비교 연구하였다. 곰솔 잎의 해부학적 특징은 섬유상 표피, 2-3층의 하피, 표피보다 내려앉은 기공구조, 한가지 형태로 구성된 엽육조직, 뚜렷한 유관속초 등을 가진 전형적인 바늘상 잎이다. 곰솔 잎에 있어서 수지도는 발생위치에 따라 유관속초의 외부, 중간, 내부 등 3가지 분포형태로 구분되었다. 조사된 모든 재료에서 수지도의 개수는 4개에서 12개까지 지역간 변이가 관찰되었다. 기공은 잎 전체를 통하여 기공선으로 발달하였다. 곰솔 잎 해부형태에서 관찰된 중요한 차이는 수지도의 발생위치와 전체개수 그리고 잎 표면에 나타나는 기공의 기공선 개수이었다.

Keywords

References

  1. Abrams, M. D. and M. E. Kubiske. 1990. Leaf structural characteristics of 31 hardwood and conifer tree species in central Wisconsin: Influence of light regime and shade-tolerance rank. Forest Ecology and Management 31: 245-253. https://doi.org/10.1016/0378-1127(90)90072-J
  2. Boratynska, K. and M. A. Bobowicz. 2001. Pinus uncinata Ramond taxonomy based on needle characters. Plant Systematic and Evolution 277: 183-194.
  3. Choi, K. H., Y. M. Kim and P. M. Jung. 2013. Adverse effect of planting pine on coastal dunes, Korea. In: Conley DC, Masselink G, Russell PE, O'Hare TJ (eds) Proceedings 12th International Coastal Symposium (Plymouth, England), Journal of Coastal Research 65: 909-914. https://doi.org/10.2112/SI65-154.1
  4. Dorken, V. M. and T. Stutzel. 2012. Morphology, anatomy and vasculature of leaves in Pinus (Pinaceae) and its evolutionary meaning. Flora 207: 57-62. https://doi.org/10.1016/j.flora.2011.10.004
  5. Eckenwalder, J. E. 2009. Conifers of the World. Timber Press, Portland.
  6. Fahn, A. and J. Benayoun. 1976. Ultrastructure of resin ducts in Pinus halepensis development, possible sites of resin synthesis, and mode of its elimination from the protoplast. Annals of Botany 40: 857-863. https://doi.org/10.1093/oxfordjournals.aob.a085201
  7. Fu, L., N. Li, R. R. Mill. 1999. Pinaceae. In:Wu ZY, Raven PH (eds) Flora of China, Cycadaceae through Fagaceae. Science Press, Beijing and Missouri Botanical Garden Press, St. Louis, 4: 11-52.
  8. Gambles, R. L. and R. E. Dengler. 1982. The anatomy of the leaf of red pine, Pinus resinosa L. nonvascular tissues. Canadian Journal of Botany 60: 2788-2803. https://doi.org/10.1139/b82-341
  9. Garcia-Alvarez, S., I. Garcia-Amorena, J. M. Rubiales and C. Morla. 2009. The value of leaf cuticle characteristics in the identification and classification of Iberian Mediterranean members of the genus Pinus. Botanical Journal of Linnean Society 161: 436-448. https://doi.org/10.1111/j.1095-8339.2009.01011.x
  10. Han, G. X., P. L. Mao, S. J. Lui, G. M. Wang, Z. D. Zang and Q. Z. Xue. 2009. Effects of sea water salinity and mother tree size on the seed germination and seedling early growth of Pinus thunbergii coastal protection forest. Chinese J. Ecology 28: 2171-2176. (In Chinese)
  11. Helmers, A. E. 1943. Ecological anatomy of ponderosa pine needles. The American Midland Naturalist 29: 55-71. https://doi.org/10.2307/2420979
  12. Hengxiao, G., J. D. McMillin, M. R. Wagner, J. Zhou, Z. Zhou, X. Xu. 1999. Altitudinal variation in foliar chemistry and anatomy of Yunnan pine, Pinus yunnanensis, and pine sawfly (Hym. Diprionidae) performance. J. Appl. Entomol. 123: 465-471. https://doi.org/10.1046/j.1439-0418.1999.00395.x
  13. Hetherington, A. M. and F. I. Woodward. 2003. The role of stomata in sensing and driving environmental change. Nature 424: 901-908. https://doi.org/10.1038/nature01843
  14. Jokela, A., T. Sarjala and S. Huttunen. 1998. The structure and hardening status of Scots pine needle at different potassium availability levels. Trees-Structure and Function 12: 490-498. https://doi.org/10.1007/s004680050179
  15. Kim, K. D. 2005. Invasive plants on distributed Korean sand dunes. Estuarine, Coastal and Shelf Science 62: 353-364. https://doi.org/10.1016/j.ecss.2004.09.023
  16. Kim, H., S. H. Jeong, D. G. Kim, H. J. Kim, S. M. Choi, M. B. Lee, S. W. Bae, J. H. Lim and S. H. Lee. 2013. Developing a site index model considering soil characteristics for Pinus thunbergii stands grown on the coast of Korea. Korean Journal of Applied Biological Chemistry 56: 173-180. https://doi.org/10.1007/s13765-012-3255-2
  17. Kormutak, A., R. Matusova, A. Szmidt and D. Lindgren. 1993. Karyological, anatomical and restriction fragment length polymorphism characteristics of the interspecific hybrid Pinus banksiana ${\times}$ Pinus contorta. Biologia (Bratislava) 48: 95-100.
  18. Ministry of Environment .2001. Distribution of coastal dunes and their actual condition in Korea. pp. 229. (In Korean)
  19. Murai, H., M. Ishikawa, J. Endo, R. Tadaki. 1992. The coastal forest in Japan. Soft Science Inc., Tokyo. (In Japanese)
  20. Obase, K., J. Y. Cha, J. K. Lee, S. Y. Lee, J. H. Lee and K. W. Chun. 2009. Ectomycorrhizal fungal communities associated with Pinus thunbergii in the eastern coastal pine forests of Korea. Mycorrhiza 20: 39-49. https://doi.org/10.1007/s00572-009-0262-1
  21. Pritchard, S., C. Peterson, G. B. Runion, S. Prior and H. Rogers. 1997. Atmospheric CO2 concentration, N availability, and water status affect patterns of ergastic substance deposition in longleaf pine (Pinus palustris Mill.) foliage. Trees 11: 494-503.
  22. Richardson, D. M 1998. Ecology and Biogeography of Pinus. Cambridge University Press.
  23. Schoettle, A. W. and S. G. Rochelle. 2000. Morphological variation of Pinus flexilis (Pinaceae), a bird-dispersed pine, across a range of elevations. American Journal of Botany 87: 1797-1806. https://doi.org/10.2307/2656832
  24. Sheue, C. R., Y. P. Yank, L. L. Kuo-Huang. 2003. Altitudinal variation of resin ducts in Pinus taiwanensis Hayata (Pinaceae) needles. Botanical Bulletin of Academic Sinica 44: 305-313.
  25. Skuterud, L., N. I. Goltsova, R. Næumann, T. Silleland and T. Lindmo. 1994. Histological changes in Pinus sylvestris L. in the proximal-zone around the Chernobyl power plant. Science Total Environment 157: 387-397. https://doi.org/10.1016/0048-9697(94)90602-5
  26. Spjut, R. W. 2007. A phytogeographical analysis of Taxus (Taxaceae) based on leaf anatomical characters. Journal of Botanical Research Institute of Texas 1: 291-332.
  27. Tiwari, S. P., P. Kumar, D. Yadav and D. K. Chauhan. 2013. Comparative morphological, epidermal, and anatomical studies of Pinus roxburghii needles at different altitudes in the North- West Indian Himalayas. Turkish Journal of Botany 37: 65-73.
  28. Taylor, T. N., E. L. Taylor and M. Krings. 2009. Paleobotany, The Biology and Evolution of Fossil Plants. Academic Press, Burlington-London.
  29. Telewski, F. W., R. T. Swanson, B. R. Strain and J. M. Burns. 1999. Wood properties and ring width response to long-term atmospheric $CO_2$ enrichment in field-grown loblolly pine (Pinus taeda L.). Plant Cell Environment 22: 213-219. https://doi.org/10.1046/j.1365-3040.1999.00392.x
  30. Telewski, F. W., A. H. Wakefield and M. J. Jaffe. 1983. Computerassisted image analysis of tissues of ethrel-treated Pinus taeda seedlings. Plant Physiology 72: 177-181. https://doi.org/10.1104/pp.72.1.177
  31. Yang, J.E., W. Y. Lee, Y. S. Ok and J. Skousen. 2009. Soil nutrients bioavailability and nutrient content of pine tree (Pinus thunbergii) in area impacted by acid deposition in Korea. Environmental monitoring and Assessment 157: 43-50. https://doi.org/10.1007/s10661-008-0513-1
  32. Zang, D., C. R. Li, J. W. Xu, L. C. Lui, Z. Zhou, X. L. Wang and C. Huang. 2011. Branching pattern characteristics and antiwind breakage ability of Pinus thunbergii in sandy coast. Chinese Journal of Plant Ecology 35: 926-936. (In Chinese) https://doi.org/10.3724/SP.J.1258.2011.00926