DOI QR코드

DOI QR Code

Cohesin gene mutations in tumorigenesis: from discovery to clinical significance

  • Solomon, David A. (Department of Pathology, University of California) ;
  • Kim, Jung-Sik (Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine) ;
  • Waldman, Todd (Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine)
  • Received : 2014.05.01
  • Published : 2014.06.30

Abstract

Cohesin is a multi-protein complex composed of four core subunits (SMC1A, SMC3, RAD21, and either STAG1 or STAG2) that is responsible for the cohesion of sister chromatids following DNA replication until its cleavage during mitosis thereby enabling faithful segregation of sister chromatids into two daughter cells. Recent cancer genomics analyses have discovered a high frequency of somatic mutations in the genes encoding the core cohesin subunits as well as cohesin regulatory factors (e.g. NIPBL, PDS5B, ESPL1) in a select subset of human tumors including glioblastoma, Ewing sarcoma, urothelial carcinoma, acute myeloid leukemia, and acute megakaryoblastic leukemia. Herein we review these studies including discussion of the functional significance of cohesin inactivation in tumorigenesis and potential therapeutic mechanisms to selectively target cancers harboring cohesin mutations.

Keywords

References

  1. Nasmyth, K. (2002) Segregating sister genomes: The molecular biology of chromosome separation. Science 297, 559-565. https://doi.org/10.1126/science.1074757
  2. Remeseiro, S., Cuadrado, A. and Losada, A. (2013) Cohesin in development and disease. Development 140, 3715-3718. https://doi.org/10.1242/dev.090605
  3. Sumara, I., Vorlaufer, E., Gieffers, C., Peters, B. H. and Peters, J. M. (2000) Characterization of vertebrate cohesin complexes and their regulation in prophase. J. Cell Biol. 151, 749-762. https://doi.org/10.1083/jcb.151.4.749
  4. Haering, C. H., Farcas, A. M., Arumugam, P., Metson, J. and Nasmyth, K. (2008) The cohesin ring concatenates sister DNA molecules. Nature 454, 297-301. https://doi.org/10.1038/nature07098
  5. Canudas, S. and Smith, S. (2009) Differential regulation of telomere and centromere cohesion by the Scc3 homologues SA1 and SA2, respectively, in human cells. J. Cell Biol. 187, 165-173. https://doi.org/10.1083/jcb.200903096
  6. Remeseiro, S., Cuadrado, A., Carretero, M., Martinez, P., Drosopoulos, W. C., Canamero, M., Schildkraut, C. L., Blasco, M. A. and Losada, A. (2012) Cohesin-SA1 deficiency drives aneuploidy and tumourigenesis in mice due to impaired replication of telomeres. EMBO J. 31, 2076-2089. https://doi.org/10.1038/emboj.2012.11
  7. McNicoll, F., Stevense, M. and Jessberger, R. (2013) Cohesin in gametogenesis. Curr. Top. Dev. Biol. 102, 1-34. https://doi.org/10.1016/B978-0-12-416024-8.00001-5
  8. Rollins, R. A., Korom, M., Aulner, N., Martens, A. and Dorsett, D. (2004) Drosophila nipped-B protein supports sister chromatid cohesion and opposes the stromalin/Scc3 cohesion factor to facilitate long-range activation of the cut gene. Mol. Cell. Biol. 24, 3100-3111. https://doi.org/10.1128/MCB.24.8.3100-3111.2004
  9. Seitan, V. C., Banks, P., Laval, S., Majid, N. A., Dorsett, D., Rana, A., Smith, J., Bateman, A., Krpic, S., Hostert, A., Rollins, R. A., Erdjument-Bromage, H., Tempst, P., Benard, C. Y., Hekimi, S., Newbury, S. F. and Strachan, T. (2006) Metazoan Scc4 homologs link sister chromatid cohesion to cell and axon migration guidance. PLoS Biol. 4, e242. https://doi.org/10.1371/journal.pbio.0040242
  10. Tedeschi, A., Wutz, G., Huet, S., Jaritz, M., Wuensche, A., Schirghuber, E., Davidson, I. F., Tang, W., Cisneros, D. A., Bhaskara, V., Nishiyama, T., Vaziri, A., Wutz, A., Ellenberg, J. and Peters, J. M. (2013) Wapl is an essential regulator of chromatin structure and chromosome segregation. Nature 501, 564-568. https://doi.org/10.1038/nature12471
  11. Carretero, M., Ruiz-Torres, M., Rodriguez-Corsino, M., Barthelemy, I. and Losada, A. (2013) Pds5B is required for cohesion establishment and Aurora B accumulation at centromeres. EMBO J. 32, 2938-2949. https://doi.org/10.1038/emboj.2013.230
  12. Zhang, J., Shi, X., Li, Y., Kim, B. J., Jia, J., Huang, Z., Yang, T., Fu, X., Jung, S. Y., Wang, Y., Zhang, P., Kim, S. T., Pan, X. and Qin, J. (2008) Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol. Cell 31, 143-151. https://doi.org/10.1016/j.molcel.2008.06.006
  13. Unal, E., Heidinger-Pauli, J. M., Kim, W., Guacci, V., Onn, I., Gygi, S. P. and Koshland, D. E. (2008) A molecular determinant for the establishment of sister chromatid cohesion. Science 321, 566-569. https://doi.org/10.1126/science.1157880
  14. Rankin, S., Ayad, N. G. and Kirschner, M. W. (2005) Sororin, a substrate of the anaphase-promoting complex, is required for sister chromatid cohesion in vertebrates. Mol. Cell 18, 185-200. https://doi.org/10.1016/j.molcel.2005.03.017
  15. Hauf, S., Roitinger, E., Koch, B., Dittrich, C. M., Mechtler, K. and Peters, J. M. (2005) Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol. 3, e69. https://doi.org/10.1371/journal.pbio.0030069
  16. Salic, A., Waters, J. C. and Mitchison, T. J. (2004) Vertebrate shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell 118, 567-578. https://doi.org/10.1016/j.cell.2004.08.016
  17. Cohen-Fix, O., Peters, J. M., Kirschner, M. W. and Koshland, D. (1996) Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Dev. 10, 3081-3093. https://doi.org/10.1101/gad.10.24.3081
  18. Uhlmann, F., Lottspeich, F. and Nasmyth, K. (1999) Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400, 37-42. https://doi.org/10.1038/21831
  19. Mehta, G. D., Kumar, R., Srivastava, S. and Ghosh, S. K. (2013) Cohesin: functions beyond sister chromatid cohesion. FEBS Lett. 587, 2299-2312. https://doi.org/10.1016/j.febslet.2013.06.035
  20. Wendt, K. S., Yoshida, K., Itoh, T., Bando, M., Koch, B., Schirghuber, E., Tsutsumi, S., Nagae, G., Ishihara, K., Mishiro, T., Yahata, K., Imamoto, F., Aburatani, H., Nakao, M., Imamoto, N., Maeshima, K., Shirahige, K. and Peters, J. M. (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451, 796-801. https://doi.org/10.1038/nature06634
  21. Parelho, V., Hadjur, S., Spivakov, M., Leleu, M., Sauer, S., Gregson, H. C., Jarmuz, A., Canzonetta, C., Webster, Z., Nesterova, T., Cobb, B. S., Yokomori, K., Dillon, N., Aragon, L., Fisher, A. G. and Merkenschlager, M. (2008) Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132, 422-433. https://doi.org/10.1016/j.cell.2008.01.011
  22. Xiao, T., Wallace, J. and Felsenfeld, G. (2011) Specific sites in the C terminus of CTCF interact with the SA2 subunit of the cohesin complex and are required for cohesin-dependent insulation activity. Mol. Cell. Biol. 31, 2174-2183. https://doi.org/10.1128/MCB.05093-11
  23. Kagey, M. H., Newman, J. J., Bilodeau, S., Zhan, Y., Orlando, D. A., van Berkum, N. L., Ebmeier, C. C., Goossens, J., Rahl, P. B., Levine, S. S., Taatjes, D. J., Dekker, J. and Young, R. A. (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430-435. https://doi.org/10.1038/nature09380
  24. Hahn, M., Dambacher, S., Dulev, S., Kuznetsova, A. Y., Eck, S., Worz, S., Sadic, D., Schulte, M., Mallm, J. P., Maiser, A., Debs, P., von Melchner, H., Leonhardt, H., Schermelleh, L., Rohr, K., Rippe, K., Storchova, Z. and Schotta, G. (2013) Suv4-20h2 mediates chromatin compaction and is important for cohesin recruitment to heterochromatin. Genes Dev. 27, 859-872. https://doi.org/10.1101/gad.210377.112
  25. Krantz, I. D., McCallum, J., DeScipio, C., Kaur, M., Gillis, L. A., Yaeger, D., Jukofsky, L., Wasserman, N., Bottani, A., Morris, C. A., Nowaczyk, M. J., Toriello, H., Bamshad, M. J., Carey, J. C., Rappaport, E., Kawauchi, S., Lander, A. D., Calof, A. L., Li, H. H., Devoto, M. and Jackson, L. G. (2004) Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B. Nat. Genet. 36, 631-635. https://doi.org/10.1038/ng1364
  26. Tonkin, E. T., Wang, T. J., Lisgo, S., Bamshad, M. J. and Strachan, T. (2004) NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat. Genet. 36, 636-641. https://doi.org/10.1038/ng1363
  27. Musio, A., Selicorni, A., Focarelli, M. L., Gervasini, C., Milani, D., Russo, S., Vezzoni, P. and Larizza, L. (2006) X-linked Cornelia de Lange syndrome owing to SMC1L1 mutations. Nat. Genet. 38, 528-530. https://doi.org/10.1038/ng1779
  28. Deardorff, M. A., Kaur, M., Yaeger, D., Rampuria, A., Korolev, S., Pie, J., Gil-Rodriguez, C., Arnedo, M., Loeys, B., Kline, A. D., Wilson, M., Lillquist, K., Siu, V., Ramos, F. J., Musio, A., Jackson, L. S., Dorsett, D. and Krantz, I. D. (2007) Mutations in cohesin complex members SMC3 and SMC1A cause a mild variant of Cornelia de Lange syndrome with predominant mental retardation. Am. J. Hum. Genet. 80, 485-494. https://doi.org/10.1086/511888
  29. Deardorff, M. A., Wilde, J. J., Albrecht, M., Dickinson, E., Tennstedt, S., Braunholz, D., Monnich, M., Yan, Y., Xu, W., Gil-Rodriguez, M. C., Clark, D., Hakonarson, H., Halbach, S., Michelis, L. D., Rampuria, A., Rossier, E., Spranger, S., Van Maldergem, L., Lynch, S. A., Gillessen-Kaesbach, G., Ludecke, H. J., Ramsay, R. G., McKay, M. J., Krantz, I. D., Xu, H., Horsfield, J. A. and Kaiser, F. J. (2012) RAD21 mutations cause a human cohesinopathy. Am. J. Hum. Genet. 90, 1014-1027. https://doi.org/10.1016/j.ajhg.2012.04.019
  30. Kaur, M., DeScipio, C., McCallum, J., Yaeger, D., Devoto, M., Jackson, L. G., Spinner, N. B. and Krantz, I. D. (2005) Precocious sister chromatid separation (PSCS) in Cornelia de Lange syndrome. Am. J. Med. Genet. 138A, 27-31. https://doi.org/10.1002/ajmg.a.30919
  31. Castronovo, P., Gervasini, C., Cereda, A., Masciadri, M., Milani, D., Russo, S., Selicorni, A. and Larizza, L. (2009) Premature chromatid separation is not a useful diagnostic marker for Cornelia de Lange syndrome. Chromosome Res. 17, 763-771. https://doi.org/10.1007/s10577-009-9066-6
  32. Liu, J., Zhang, Z., Bando, M., Itoh, T., Deardorff, M. A., Clark, D., Kaur, M., Tandy, S., Kondoh, T., Rappaport, E., Spinner, N. B., Vega, H., Jackson, L. G., Shirahige, K. and Krantz, I. D. (2009) Transcriptional dysregulation in NIPBL and cohesin mutant human cells. PLoS Biol. 7, e1000119. https://doi.org/10.1371/journal.pbio.1000119
  33. Kawauchi, S., Calof, A. L., Santos, R., Lopez-Burks, M. E., Young, C. M., Hoang, M. P., Chua, A., Lao, T., Lechner, M. S., Daniel, J. A., Nussenzweig, A., Kitzes, L., Yokomori, K., Hallgrimsson, B. and Lander, A. D. (2009) Multiple organ system defects and transcriptional dysregulation in the Nipbl(+/-) mouse, a model of Cornelia de Lange Syndrome. PLoS Genet. 5, e1000650. https://doi.org/10.1371/journal.pgen.1000650
  34. Remeseiro, S., Cuadrado, A., Gomez-Lopez, G., Pisano, D. G. and Losada, A. (2012) A unique role of cohesin-SA1 in gene regulation and development. EMBO J. 31, 2090-2102. https://doi.org/10.1038/emboj.2012.60
  35. Schrier, S. A., Sherer, I., Deardorff, M. A., Clark, D., Audette, L., Gillis, L., Kline, A. D., Ernst, L., Loomes, K., Krantz, I. D. and Jackson, L. G. (2011) Causes of death and autopsy findings in a large study cohort of individuals with Cornelia de Lange syndrome and review of the literature. Am. J. Med. Genet. 155A, 3007-3024.
  36. Caburet, S., Arboleda, V. A., Llano, E., Overbeek, P. A., Barbero, J. L., Oka, K., Harrison, W., Vaiman, D., Ben-Neriah, Z., Garcia-Tunon, I., Fellous, M., Pendas, A. M., Veitia, R. A. and Vilain, E. (2014) Mutant cohesin in premature ovarian failure. N. Engl. J. Med. 370, 943-949. https://doi.org/10.1056/NEJMoa1309635
  37. Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: The next generation. Cell 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
  38. Gordon, D. J., Resio, B. and Pellman, D. (2012) Causes and consequences of aneuploidy in cancer. Nat. Rev. Genet. 13, 189-203.
  39. Barber, T. D., McManus, K., Yuen, K. W., Reis, M., Parmigiani, G., Shen, D., Barrett, I., Nouhi, Y., Spencer, F., Markowitz, S., Velculescu, V. E., Kinzler, K. W., Vogelstein, B., Lengauer, C. and Hieter, P. (2008) Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc. Natl. Acad. Sci. U. S. A. 105, 3443-3448. https://doi.org/10.1073/pnas.0712384105
  40. Rocquain, J., Gelsi-Boyer, V., Adelaide, J., Murati, A., Carbuccia, N., Vey, N., Birnbaum, D., Mozziconacci, M. J. and Chaffanet, M. (2010) Alteration of cohesin genes in myeloid diseases. Am. J. Hematol. 85, 717-719. https://doi.org/10.1002/ajh.21798
  41. Solomon, D. A., Kim, T., Diaz-Martinez, L. A., Fair, J., Elkahloun, A. G., Harris, B. T., Toretsky, J. A., Rosenberg, S. A., Shukla, N., Ladanyi, M., Samuels, Y., James, C. D., Yu, H., Kim, J. S. and Waldman, T. (2011) Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science 333, 1039-1043. https://doi.org/10.1126/science.1203619
  42. Ding, L., Ley, T. J., Larson, D. E., Miller, C. A., Koboldt, D. C., Welch, J. S., Ritchey, J. K., Young, M. A., Lamprecht, T., McLellan, M. D., McMichael, J. F., Wallis, J. W., Lu, C., Shen, D., Harris, C. C., Dooling, D. J., Fulton, R. S., Fulton, L. L., Chen, K., Schmidt, H., Kalicki-Veizer, J., Magrini, V. J., Cook, L., McGrath, S. D., Vickery, T. L., Wendl, M. C., Heath, S., Watson, M. A., Link, D. C., Tomasson, M. H., Shannon, W. D., Payton, J. E., Kulkarni, S., Westervelt, P., Walter, M. J., Graubert, T. A., Mardis, E. R., Wilson, R. K. and DiPersio, J. F. (2012) Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481, 506-510. https://doi.org/10.1038/nature10738
  43. Walter, M. J., Shen, D., Ding, L., Shao, J., Koboldt, D. C., Chen, K., Larson, D. E., McLellan, M. D., Dooling, D., Abbott, R., Fulton, R., Magrini, V., Schmidt, H., Kalicki-Veizer, J., O'Laughlin, M., Fan, X., Grillot, M., Witowski, S., Heath, S., Frater, J. L., Eades, W., Tomasson, M., Westervelt, P., DiPersio, J. F., Link, D. C., Mardis, E. R., Ley, T. J., Wilson, R. K. and Graubert, T. A. (2012) Clonal architecture of secondary acute myeloid leukemia. N. Engl. J. Med. 366, 1090-1098. https://doi.org/10.1056/NEJMoa1106968
  44. Welch, J. S., Ley, T. J., Link, D. C., Miller, C. A., Larson, D. E., Koboldt, D. C., Wartman, L. D., Lamprecht, T. L., Liu, F., Xia, J., Kandoth, C., Fulton, R. S., McLellan, M. D., Dooling, D. J., Wallis, J. W., Chen, K., Harris, C. C., Schmidt, H. K., Kalicki-Veizer, J. M., Lu, C., Zhang, Q., Lin, L., O'Laughlin, M. D., McMichael, J. F., Delehaunty, K. D., Fulton, L. A., Magrini, V. J., McGrath, S. D., Demeter, R. T., Vickery, T. L., Hundal, J., Cook, L. L., Swift, G. W., Reed, J. P., Alldredge, P. A., Wylie, T. N., Walker, J. R., Watson, M. A., Heath, S. E., Shannon, W. D., Varghese, N., Nagarajan, R., Payton, J. E., Baty, J. D., Kulkarni, S., Klco, J. M., Tomasson, M. H., Westervelt, P., Walter, M. J., Graubert, T. A., DiPersio, J. F., Ding, L., Mardis, E. R. and Wilson, R. K. (2012) The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264-278. https://doi.org/10.1016/j.cell.2012.06.023
  45. The Cancer Genome Atlas Research Network. (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059-2074. https://doi.org/10.1056/NEJMoa1301689
  46. Kon, A., Shih, L. Y., Minamino, M., Sanada, M., Shiraishi, Y., Nagata, Y., Yoshida, K., Okuno, Y., Bando, M., Nakato, R., Ishikawa, S., Sato-Otsubo, A., Nagae, G., Nishimoto, A., Haferlach, C., Nowak, D., Sato, Y., Alpermann, T., Nagasaki, M., Shimamura, T., Tanaka, H., Chiba, K., Yamamoto, R., Yamaguchi, T., Otsu, M., Obara, N., Sakata-Yanagimoto, M., Nakamaki, T., Ishiyama, K., Nolte, F., Hofmann, W. K., Miyawaki, S., Chiba, S., Mori, H., Nakauchi, H., Koeffler, H. P., Aburatani, H., Haferlach, T., Shirahige, K., Miyano, S. and Ogawa, S. (2013) Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms. Nat. Genet. 45, 1232-1237. https://doi.org/10.1038/ng.2731
  47. Thol, F., Bollin, R., Gehlhaar, M., Walter, C., Dugas, M., Suchanek, K. J., Kirchner, A., Huang, L., Chaturvedi, A., Wichmann, M., Wiehlmann, L., Shahswar, R., Damm, F., Gohring, G., Schlegelberger, B., Schlenk, R., Dohner, K., Dohner, H., Krauter, J., Ganser, A. and Heuser, M. (2014) Mutations in the cohesin complex in acute myeloid leukemia: clinical and prognostic implications. Blood 123, 914-920. https://doi.org/10.1182/blood-2013-07-518746
  48. Wechsler, J., Greene, M., McDevitt, M. A., Anastasi, J., Karp, J. E., Le Beau, M. M. and Crispino, J. D. (2002) Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat. Genet. 32, 148-152. https://doi.org/10.1038/ng955
  49. Yoshida, K., Toki, T., Okuno, Y., Kanezaki, R., Shiraishi, Y., Sato-Otsubo, A., Sanada, M., Park, M., Terui, K., Suzuki, H., Kon, A., Nagata, Y., Sato, Y., Wang, R., Shiba, N., Chiba, K., Tanaka, H., Hama, A., Muramatsu, H., Hasegawa, D., Nakamura, K., Kanegane, H., Tsukamoto, K., Adachi, S., Kawakami, K., Kato, K., Nishimura, R., Izraeli, S., Hayashi, Y., Miyano, S., Kojima, S., Ito, E. and Ogawa, S. (2013) The landscape of somatic mutations in Down syndrome-related myeloid disorders. Nat. Genet. 45, 1293-1299. https://doi.org/10.1038/ng.2759
  50. Solomon, D. A., Kim, J. S., Bondaruk, J., Shariat, S. F., Wang, Z. F., Elkahloun, A. G., Ozawa, T., Gerard, J., Zhuang, D., Zhang, S., Navai, N., Siefker-Radtke, A., Phillips, J. J., Robinson, B. D., Rubin, M. A., Volkmer, B., Hautmann, R., Kufer, R., Hogendoorn, P. C. W., Netto, G., Theodorescu, D., James, C. D., Czerniak, B., Miettinen, M. and Waldman, T. (2013) Frequent truncating mutations of STAG2 in bladder cancer. Nat. Genet. 45, 1428-1430. https://doi.org/10.1038/ng.2800
  51. Balbas-Martinez, C., Sagrera, A., Carrillo-de-Santa-Pau, E., Earl, J., Marquez, M., Vazquez, M., Lapi, E., Castro-Giner, F., Beltran, S., Bayes, M., Carrato, A., Cigudosa, J. C., Dominguez, O., Gut, M., Herranz, J., Juanpere, N., Kogevinas, M., Langa, X., Lopez-Knowles, E., Lorente, J. A., Lloreta, J., Pisano, D. G., Richart, L., Rico, D., Salgado, R. N., Tardon, A., Chanock, S., Heath, S., Valencia, A., Losada, A., Gut, I., Malats, N. and Real, F. X. (2013) Recurrent inactivation of STAG2 in bladder is not associated with aneuploidy. Nat. Genet. 45, 1464-1469. https://doi.org/10.1038/ng.2799
  52. Guo, G., Sun, X., Chen, C., Wu, S., Huang, P., Li, Z., Dean, M., Huang, Y., Jia, W., Zhou, Q., Tang, A., Yang, Z., Li, X., Song, P., Zhao, X., Ye, R., Zhang, S., Lin, Z., Qi, M., Wan, S., Xie, L., Fan, F., Nickerson, M. L., Zou, X., Hu, X., Xing, L., Lv, Z., Mei, H., Gao, S., Liang, C., Gao, Z., Lu, J., Yu, Y., Liu, C., Li, L., Fang, X., Jiang, Z., Yang, J., Li, C., Zhao, X., Chen, J., Zhang, F., Lai, Y., Lin, Z., Zhou, F., Chen, H., Chan, H. C., Tsang, S., Theodorescu, D., Li, Y., Zhang, X., Wang, J., Yang, H., Gui, Y., Wang, J. and Cai, Z. (2013) Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation. Nat. Genet. 45, 1459-1463. https://doi.org/10.1038/ng.2798
  53. Taylor, C. F., Platt, F. M., Hurst, C. D., Thygesen, H. H. and Knowles, M. A. (2014) Frequent inactivating mutations of STAG2 in bladder cancer are associated with low tumour grade and stage and inversely related to chromosomal copy number changes. Hum. Mol. Genet. 23, 1964-1974. https://doi.org/10.1093/hmg/ddt589
  54. The Cancer Genome Atlas Research Network. (2014) Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 515-522.
  55. Hoang, M. L., Chen, C. H., Sidorenko, V. S., He, J., Dickman, K. G., Yun, B. H., Moriya, M., Niknafs, N., Douville, C., Karchin, R., Turesky, R. J., Pu, Y. S., Vogelstein, B., Papadopoulos, N., Grollman, A. P., Kinzler, K. W. and Rosenquist, T. A. (2013) Mutational signature of aristolochic acid exposure as revealed by whole-exome sequencing. Sci. Transl. Med. 5, 197ra102. https://doi.org/10.1126/scitranslmed.3006200
  56. Cancer Genome Atlas Research Network. (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43-49. https://doi.org/10.1038/nature12222
  57. Brennan, C. W., Verhaak, R. G., McKenna, A., Campos, B., Noushmehr, H., Salama, S. R., Zheng, S., Chakravarty, D., Sanborn, J. Z., Berman, S. H., Beroukhim, R., Bernard, B., Wu, C. J., Genovese, G., Shmulevich, I., Barnholtz-Sloan, J., Zou, L., Vegesna, R., Shukla, S. A., Ciriello, G., Yung, W. K., Zhang, W., Sougnez, C., Mikkelsen, T., Aldape, K., Bigner, D. D., Van Meir, E. G., Prados, M., Sloan, A., Black, K. L., Eschbacher, J., Finocchiaro, G., Friedman, W., Andrews, D. W., Guha, A., Iacocca, M., O'Neill, B. P., Foltz, G., Myers, J., Weisenberger, D. J., Penny, R., Kucherlapati, R., Perou, C. M., Hayes, D. N., Gibbs, R., Marra, M., Mills, G. B., Lander, E., Spellman, P., Wilson, R., Sander, C., Weinstein, J., Meyerson, M., Gabriel, S., Laird, P. W., Haussler, D., Getz, G., Chin, L. and The Cancer Genome Atlas Research Network. (2013) The somatic genomic landscape of glioblastoma. Cell 155, 462-477. https://doi.org/10.1016/j.cell.2013.09.034
  58. Jones, D. T., Jager, N., Kool, M., Zichner, T., Hutter, B., Sultan, M., Cho, Y. J., Pugh, T. J., Hovestadt, V., Stutz, A. M., Rausch, T., Warnatz, H. J., Ryzhova, M., Bender, S., Sturm, D., Pleier, S., Cin, H., Pfaff, E., Sieber, L., Wittmann, A., Remke, M., Witt, H., Hutter, S., Tzaridis, T., Weischenfeldt, J., Raeder, B., Avci, M., Amstislavskiy, V., Zapatka, M., Weber, U. D., Wang, Q., Lasitschka, B., Bartholomae, C. C., Schmidt, M., von Kalle, C., Ast, V., Lawerenz, C., Eils, J., Kabbe, R., Benes, V., van Sluis, P., Koster, J., Volckmann, R., Shih, D., Betts, M. J., Russell, R. B., Coco, S., Tonini, G. P., Schuller, U., Hans, V., Graf, N., Kim, Y. J., Monoranu, C., Roggendorf, W., Unterberg, A., Herold-Mende, C., Milde, T., Kulozik, A. E., von Deimling, A., Witt, O., Maass, E., Rossler, J., Ebinger, M., Schuhmann, M. U., Fruhwald, M. C., Hasselblatt, M., Jabado, N., Rutkowski, S., von Bueren, A. O., Williamson, D., Clifford, S. C., McCabe, M. G., Collins, V. P., Wolf, S., Wiemann, S., Lehrach, H., Brors, B., Scheurlen, W., Felsberg, J., Reifenberger, G., Northcott, P. A., Taylor, M. D., Meyerson, M., Pomeroy, S. L., Yaspo, M. L., Korbel, J. O., Korshunov, A., Eils, R., Pfister, S. M. and Lichter, P. (2012) Dissecting the genomic complexity underlying medulloblastoma. Nature 488, 100-105. https://doi.org/10.1038/nature11284
  59. Stephens, P. J., Tarpey, P. S., Davies, H., Van Loo, P., Greenman, C., Wedge, D. C., Nik-Zainal, S., Martin, S., Varela, I., Bignell, G. R., Yates, L. R., Papaemmanuil, E., Beare, D., Butler, A., Cheverton, A., Gamble, J., Hinton, J., Jia, M., Jayakumar, A., Jones, D., Latimer, C., Lau, K. W., McLaren, S., McBride, D. J., Menzies, A., Mudie, L., Raine, K., Rad, R., Chapman, M. S., Teague, J., Easton, D., Langerod, A., Oslo Breast Cancer Consortium (OSBREAC), Lee, M. T., Shen, C. Y., Tee, B. T., Huimin, B. W., Broeks, A., Vargas, A. C., Turashvili, G., Martens, J., Fatima, A., Miron, P., Chin, S. F., Thomas, G., Boyault, S., Mariani, O., Lakhani, S. R., van de Vijver, M., van 't Veer, L., Foekens, J., Desmedt, C., Sotiriou, C., Tutt, A., Caldas, C., Reis-Filho, J. S, Aparicio, S. A., Salomon, A. V., Borresen-Dale, A. L., Richardson, A. L., Campbell, P. J., Futreal, P. A. and Stratton, M. R. (2012) The landscape of cancer genes and mutational processes in breast cancer. Nature 486, 400-404.
  60. Evers, L., Perez-Mancera, P. A., Lenkiewicz, E., Tang, N., Aust, D., Knosel, T., Rummele, P., Holley, T., Kassner, M., Aziz, M., Ramanathan, R. K., Von Hoff, D. D., Yin, H., Pilarsky, C. and Barrett, M. T. (2014) STAG2 is a clinically relevant tumor suppressor in pancreatic ductal adenocarcinoma. Genome Med. 6, 9. https://doi.org/10.1186/gm526
  61. Kim, M. S., An, C. H., Yoo, N. J. and Lee, S. H. (2013) Frameshift mutations of chromosome cohesion-related genes SGOL1 and PDS5B in gastric and colorectal cancers with high microsatellite instability. Hum. Pathol. 44, 2234-2240. https://doi.org/10.1016/j.humpath.2013.04.017
  62. Birkenbihl, R. P. and Subramani, S. (1992) Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double-strand-break repair. Nucleic Acids Res. 20, 6605-6611. https://doi.org/10.1093/nar/20.24.6605
  63. Sjogren, C. and Nasmyth, K. (2001) Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr. Biol. 11, 991-995. https://doi.org/10.1016/S0960-9822(01)00271-8
  64. Strom, L., Lindroos, H. B., Shirahige, K. and Sjogren, C. (2004) Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol. Cell 16, 1003-1015. https://doi.org/10.1016/j.molcel.2004.11.026
  65. Strom, L., Karlsson, C., Lindroos, H. B., Wedahl, S., Katou, Y., Shirahige, K. and Sjogren, C. (2007) Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science 317, 242-245. https://doi.org/10.1126/science.1140649
  66. Bauerschmidt, C., Arrichiello, C., Burdak-Rothkamm, S., Woodcock, M., Hill, M. A., Stevens, D. L. and Rothkamm, K. (2010) Cohesin promotes the repair of ionizing radiation-induced DNA double-strand breaks in replicated chromatin. Nucleic Acids Res. 38, 477-487. https://doi.org/10.1093/nar/gkp976
  67. Tittel-Elmer, M., Lengronne, A., Davidson, M. B., Bacal, J., Francois, P., Hohl, M., Petrini, J. H., Pasero, P. and Cobb, J. A. (2012) Cohesin association to replication sites depends on rad50 and promotes fork restart. Mol. Cell 48, 98-108. https://doi.org/10.1016/j.molcel.2012.07.004
  68. Mannini, L., Menga, S., Tonelli, A., Zanotti, S., Bassi, M. T., Magnani, C. and Musio, A. (2012) SMC1A codon 496 mutations affect the cellular response to genotoxic treatments. Am. J. Med. Genet. 158A, 224-228. https://doi.org/10.1002/ajmg.a.34384
  69. Bailey, M. L., O'Neil, N. J., van Pel, D. M., Solomon, D. A., Waldman, T. and Hieter, P. (2014) Glioblastoma cells containing mutations in the cohesin component STAG2 are sensitive to PARP inhibition. Mol. Cancer Ther. 13, 724-732. https://doi.org/10.1158/1535-7163.MCT-13-0749

Cited by

  1. A Novel Multiplexed, Image-Based Approach to Detect Phenotypes That Underlie Chromosome Instability in Human Cells vol.10, pp.4, 2015, https://doi.org/10.1371/journal.pone.0123200
  2. IncreasedSTAG2dosage defines a novel cohesinopathy with intellectual disability and behavioral problems vol.24, pp.25, 2015, https://doi.org/10.1093/hmg/ddv414
  3. Intact Cohesion, Anaphase, and Chromosome Segregation in Human Cells Harboring Tumor-Derived Mutations in STAG2 vol.12, pp.2, 2016, https://doi.org/10.1371/journal.pgen.1005865
  4. The role of enhancers in cancer vol.16, pp.8, 2016, https://doi.org/10.1038/nrc.2016.62
  5. A Reversible Association between Smc Coiled Coils Is Regulated by Lysine Acetylation and Is Required for Cohesin Association with the DNA vol.63, pp.6, 2016, https://doi.org/10.1016/j.molcel.2016.08.008
  6. Pathway Analysis Based on a Genome-Wide Association Study of Polycystic Ovary Syndrome vol.10, pp.8, 2015, https://doi.org/10.1371/journal.pone.0136609
  7. Two-step ATP-driven opening of cohesin head vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-03118-9
  8. Loss of cohesin complex components STAG2 or STAG3 confers resistance to BRAF inhibition in melanoma vol.22, pp.9, 2016, https://doi.org/10.1038/nm.4155
  9. The Expression of Cohesin Subunit SA2 Predicts Breast Cancer Survival vol.24, pp.9, 2016, https://doi.org/10.1097/PAI.0000000000000240
  10. TDP-43 affects splicing profiles and isoform production of genes involved in the apoptotic and mitotic cellular pathways vol.43, pp.18, 2015, https://doi.org/10.1093/nar/gkv814
  11. Acute megakaryocytic leukemia: What have we learned vol.30, pp.1, 2016, https://doi.org/10.1016/j.blre.2015.07.005
  12. HDAC8 Inhibition Blocks SMC3 Deacetylation and Delays Cell Cycle Progression without Affecting Cohesin-dependent Transcription in MCF7 Cancer Cells vol.291, pp.24, 2016, https://doi.org/10.1074/jbc.M115.704627
  13. Cohesin subunits,STAG1andSTAG2, and cohesin regulatory factor,PDS5b, in oral squamous cells carcinomas vol.46, pp.3, 2017, https://doi.org/10.1111/jop.12474
  14. Familial STAG2 germline mutation defines a new human cohesinopathy vol.2, pp.1, 2017, https://doi.org/10.1038/s41525-017-0009-4
  15. Role of chromosomal instability in cancer progression vol.24, pp.9, 2017, https://doi.org/10.1530/ERC-17-0187
  16. Directly targeting transcriptional dysregulation in cancer vol.15, pp.11, 2015, https://doi.org/10.1038/nrc4018
  17. Cohesin mutations in human cancer vol.1866, pp.1, 2016, https://doi.org/10.1016/j.bbcan.2016.05.002
  18. Cohesin SA2 is a sequence-independent DNA-binding protein that recognizes DNA replication and repair intermediates vol.293, pp.3, 2018, https://doi.org/10.1074/jbc.M117.806406
  19. Cohesin dynamic association to chromatin and interfacing with replication forks in genome integrity maintenance vol.64, pp.5, 2018, https://doi.org/10.1007/s00294-018-0824-x
  20. Cohesin RAD21 Gene Promoter Methylation in Patients with Chronic Lymphocytic Leukemia vol.154, pp.3, 2018, https://doi.org/10.1159/000487868
  21. Enigmatic Ladies of the Rings: How Cohesin Dysfunction Affects Myeloid Neoplasms Insurgence vol.7, pp.2296-634X, 2019, https://doi.org/10.3389/fcell.2019.00021