DOI QR코드

DOI QR Code

Phytosterols from the Rice (Oryza sativa) Bran

  • Jung, Ye-Jin (Graduate School of Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University) ;
  • Park, Ji-Hae (Graduate School of Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University) ;
  • Shrestha, Sabina (Graduate School of Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University) ;
  • Song, Myoung-Chong (Intelligent Synthetic Biology Center, KAIST) ;
  • Cho, Suengmok (Korea Food Research Institute) ;
  • Lee, Chang-Ho (Korea Food Research Institute) ;
  • Han, Daeseok (Korea Food Research Institute) ;
  • Baek, Nam-In (Graduate School of Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University)
  • Received : 2013.08.12
  • Accepted : 2013.12.09
  • Published : 2014.06.30

Abstract

Three phytosterols of rare occurrence, schleicheol 2 (1), $7{\beta}$-hydroxysitosterol (2), and $7{\alpha}$-hydroxysitosterol (3), were isolated from the n-hexane fraction of rice (Oryza sativa) bran, for the first time. Some nuclear magnetic resonance (NMR) assignments in the literatures are inaccurate. This study employed two-dimensional NMR experiments to identify exact peak assignments.

Keywords

References

  1. Akihisa T, Yasukawa K, Yamaura M, Ukiya M, Kimura Y, Shimizu N et al. (2000) Triterpene alcohol and sterol ferulates from rice bran and their anti-inflammatory effects. J Agric Food Chem 48, 2313-9. https://doi.org/10.1021/jf000135o
  2. Berger A, Rein D, Schafer A, Monnard I, Gremaud G, Lambelet P et al. (2005) Similar cholesterol-lowering properties of rice bran oil, with varied ${\gamma}$-oryzanol, in mildly hypercholesterolemic men. Eur J Nutr 44, 163-73. https://doi.org/10.1007/s00394-004-0508-9
  3. Chang KC, Duh CY, Chen IS, and Tsai IL (2003) A cytotoxic butenolide, two new dolabellane diterpenoids, a chroman and a benzoquinol derivative Formosan Casearia membranacea. Planta Med 69, 667-72. https://doi.org/10.1055/s-2003-41120
  4. Cui EJ, Park JH, Park HJ, Chung IS, Kim JY, Yeon SW et al. (2011) Isolation of sterols from cowpea (Vigna sinensis) seeds and their promotion activity on HO-1. J Korean Soc Appl Biol Chem 54, 362-6. https://doi.org/10.3839/jksabc.2011.057
  5. Fang N, Yu S, and Badger TM (2003) Characterization of triterpene alcohol and sterol ferulates in rice bran using LC-MS/MS. J Agric Food Chem 51, 3260-7. https://doi.org/10.1021/jf021162c
  6. Kim JS and Godber JS (2001) Oxidative stability and vitamin E levels increased in restructured beef roasts with added rice bran oil. J Food Qual 24, 17-26. https://doi.org/10.1111/j.1745-4557.2001.tb00587.x
  7. Lee DY, Lee SJ, Kwak HY, Jung LK, Heo J, Hong SY et al. (2009) Sterols isolated from Nuruk (Rhizopus oryzae KSD-815) inhibit the migration of cancer cells. J Microbiol Biotechnol 19, 1328-32. https://doi.org/10.4014/jmb.0902.0072
  8. McCaskill DR and Zhang F (1999) Use of rice bran oil in foods. Food Technol 53, 50-4.
  9. Niu XM, Li SH, Peng LY, Lin ZW, Rao GX, and Sun HD (2001) Constituents from Limonia crenulata. J Asian Nat Prod Res 3, 299-311. https://doi.org/10.1080/10286020108040370
  10. Parrado J, Miramontes E, Jover M, Gutierrez JF, Collantes L de Teran, and Bautista J (2006) Preparation of a rice bran enzymatic extract with potential use as functional food. Food Chem 98, 742-8. https://doi.org/10.1016/j.foodchem.2005.07.016
  11. Pettit GR, Numata A, Cragg GM, Herald DL, Takada T, Iwamoto C et al. (2000) Isolation and structures of schleicherastatins 1-7 and schleicheols 1 and 2 from the teak forest medicinal tree Schleichera oleosa. J Nat Prod 63, 72-8. https://doi.org/10.1021/np990346r
  12. Revilla E, Maria CS, Miramontes E, Bautista J, Garcia-Martinez A, Cremades O et al. (2009) Nutraceutical composition, antioxidant activity and hypocholesterolemic effect of a water-soluble enzymatic extract from rice bran. Food Res Int 42, 387-93. https://doi.org/10.1016/j.foodres.2009.01.010
  13. Rho EM, Jin Q, Jin HG, Shin JE, Choi EJ, Moon YH et al. (2010) Structural Implication in cytotoxic effects of sterols from Sellaginella tamariscina. Arch Pharm Res 33, 1347-53. https://doi.org/10.1007/s12272-010-0908-8
  14. Roussi S, Winter A, Gosse F, Werner D, Zhang X, Marchioni E et al. (2005) Different apoptotic mechanisms are involved in the antiproliferative effects of $7{\beta}$-hydroxysitosterol and $7{\beta}$-hydroxycholesterol in human colon cancer cells. Cell Death Differ 12, 128-35. https://doi.org/10.1038/sj.cdd.4401530
  15. Santana O, Reina M, Fraga BM, Sanz J, and Gonzalez-Coloma A (2012) Antifeedant activity of fatty acid esters and phytosterols from Echium wildpretii. Chem Biodiv 9, 567-76. https://doi.org/10.1002/cbdv.201100083
  16. Tanaka A, Kato A, and Tsuchiya T (1971) Isolation of methyl ferulate from rice bran oil. J Am Oil Chem Soc 48, 95-7. https://doi.org/10.1007/BF02545727
  17. Wilson TA, Ausman LM, Lawton CW, Hegsted DM, and Nicolosi RJ (2000) Comparative Cholesterol Lowering Properties of Vegetable Oils: Beyond Fatty Acids. J Am Coll Nutr 19, 601-7. https://doi.org/10.1080/07315724.2000.10718957
  18. Zhang X, Geoffroy P, Miesch M, Julien-David D, Raul F, Aoude-Werner D et al. (2005) Gram-scale chromatographic purification of ${\beta}$-sitosterol synthesis and characterization of $\alpha$-sitosterol oxides. Steroids 70, 886-95. https://doi.org/10.1016/j.steroids.2005.06.003

Cited by

  1. Rice Secondary Metabolites: Structures, Roles, Biosynthesis, and Metabolic Regulation vol.23, pp.12, 2018, https://doi.org/10.3390/molecules23123098
  2. Genetic Diversity of Fatty Acids, Tocols, Squalene, and Phytosterols in Grains of 157 Rice Cultivars Bred in Korea vol.8, pp.4, 2014, https://doi.org/10.9787/pbb.2020.8.4.341