Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Aung, N.N. and Jihong, Y. (2011), "Simulation of non-Gaussian wind pressure fields on domed structures", Adv. Mater. Res., 163-167, 4142-4148.
- Aung, N.N. and Jihong, Y. (2012), "Simulation of multivariate non-Gaussian wind pressure on spherical latticed structures", Wind Struct., 15( 3), 223-245. https://doi.org/10.12989/was.2012.15.3.223
- Bendat, J.S. and Piersol, A.G. (1986), Random data: analysis and measurement procedures, 2nd Ed., New York.
- Bocchini, P. and Deodatis, G. (2008), "Critical review and latest developments of a class of simulation algorithms for strongly non-Gaussian random fields", Probab. Eng. Mech., 23(4), 393-407. https://doi.org/10.1016/j.probengmech.2007.09.001
- Choi, H. and Kanda, J. (2003), "Translation method: A historical review and its application to simulation of non-Gaussian stationary processes", Wind Struct., 6(5), 357-386. https://doi.org/10.12989/was.2003.6.5.357
- Gioffre, M., Gusella, V. and Grigoriu, M. (2000), "Simulation of non-Gaussian field applied to wind pressure fluctuations", Probab. Eng. Mech., 15(4), 339-345. https://doi.org/10.1016/S0266-8920(99)00035-1
- Gurley, K.R., Kareem, A. and Tognarelli, M.A. (1996), "Simulation of a class of non-normal random processes", Int. J. Nonlinear Mech., 31(5), 601-617. https://doi.org/10.1016/0020-7462(96)00025-X
- Li, J. and Li, C. (2012), "Simulation of Non-Gaussian stochastic process with target power spectral density and lower-order moments", J. Eng. Mech.- ASCE, 138(5), 391-404. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000349
- Li, J. and Wang, X. (2012), "An exponential model for fast simulation of multivariate non-Gaussian processes with application to structural wind engineering", Probab. Eng. Mech., 30, 37-47. https://doi.org/10.1016/j.probengmech.2012.03.001
- Luo, J.J., Su, C. and Han, D.J. (2012), "A simulation methodology of the stationary non-Gaussian stochastic wind pressure field", Zhendong yu Chongji/J. Vib. Shock, 31(10), 111-117.
- Phoon, K.K. and Huang, H.W. (2005), "Simulation of strongly non-Gaussian processes using Karhunen-Loeve expansion", Probab. Eng. Mech., 20(2), 188-198. https://doi.org/10.1016/j.probengmech.2005.05.007
- Poirion, F. and Puig, B. (2010), "Simulation of non-Gaussian multivariate stationary processes", Int. J. Nonlinear Mech., 45(5), 587-597. https://doi.org/10.1016/j.ijnonlinmec.2010.03.002
- Seong, S.H. and Peterka, J.A (1998), "Digital generation of surface-pressure fluctuations with spiky features", J. Wind Eng. Ind. Aerod., 73(2), 181-192. https://doi.org/10.1016/S0167-6105(97)00283-3
- Seong, S.H. and Peterka, J.A. (2001), "Experiments on fourier phases for synthesis of non-Gaussian spikes in turbulence time series", J. Wind Eng. Ind. Aerod., 89(5), 421-443. https://doi.org/10.1016/S0167-6105(00)00073-8
- Shields, M.D. and Deodatis, G. (2011), "Simulation of strongly non-Gaussian stochastic vector processes using translation process theory", Proceedings of the 11th International Conference on Applications of Statistics and Probability in Civil Engineering.
- Shields, M.D. and Deodatis, G. (2013), "A simple and efficient methodology to approximate a general non-Gaussian stationary stochastic vector process by a translation process with applications in wind velocity simulation", Probab. Eng. Mech., 31, 19-29. https://doi.org/10.1016/j.probengmech.2012.10.003
- Steinwolf, A. (1996), "Approximation and simulation of probability distributions with a variable kurtosis value", Comput. Stat. Data An., 21(2), 163-180. https://doi.org/10.1016/0167-9473(95)00010-0
- Steinwolf, A. (2010), "Shaker random testing with low kurtosis: Review of the methods and application for sigma limiting", Shock Vib., 17(3), 219-231. https://doi.org/10.1155/2010/502829
- Steinwolf, A. (2007), "Forget clipping: Go random with non-Gaussian sigma limiting and double the shaker power!", Test Eng. Management, 69(3), 10-13.
- Suresh Kumar, K. and Stathopoulos, T. (1999), "Synthesis of non-Gaussian wind pressure time series on low building roofs", Eng. Struct., 21(12), 1086-1100. https://doi.org/10.1016/S0141-0296(98)00069-8
- Vargas-Guzman, J.A. (2012), "A Heavy tailed probability distributions for non-Gaussian simulations with higher-order cumulant parameters predicted from sample data", Stoch. Env. Res. Risk A., 26(6), 765-776. https://doi.org/10.1007/s00477-011-0537-x
- Yamazaki, F. and Shinozuka, M. (1988), "Digital generation of non-Gaussian stochastic fields", J. Eng. Mech. - ASCE, 114(7),1183-1197. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:7(1183)
- Ye, J., Ding, J. and Liu, C. (2012), "Numerical simulation of non-Gaussian wind load", Science China Technol. Sciences, 55(11), 3057-3069. https://doi.org/10.1007/s11431-012-4829-2
- Yu J., Zhang, C. and Chen, X. (2008), "Simulation techniques of non-Gaussian random loadings in structural reliability analysis", Safety, Reliability and Risk Analysis: Theory, Methods and Applications, Proceedings of the Joint ESREL and SRA-Europe Conference,1663-1670.
- Yura, H.T. and Hanson, S.G. (2012), "Digital simulation of two-dimensional random fields with arbitrary power spectra and non-Gaussian probability distribution functions", Appl. Optics, 51(10), 77-83. https://doi.org/10.1007/s10589-010-9316-8
- Zentner, I., Poirion, F. and Cacciola, P. (2011), "Simulation of seismic ground motion time histories from data using a non Gaussian stochastic model", Applications of Statistics and Probability in Civil Engineering -Proceedings of the 11th International Conference on Applications of Statistics and Probability in Civil Engineering, 2474-2479.
Cited by
- Experimental Design and Validation of an Accelerated Random Vibration Fatigue Testing Methodology vol.2015, 2015, https://doi.org/10.1155/2015/147871
- Non-Gaussian time-dependent statistics of wind pressure processes on a roof structure vol.23, pp.4, 2016, https://doi.org/10.12989/was.2016.23.4.275
- Linear prediction and z-transform based CDF-mapping simulation algorithm of multivariate non-Gaussian fluctuating wind pressure vol.31, pp.6, 2020, https://doi.org/10.12989/was.2020.31.6.549