References
- Choy, B., Lee, J.H. and Kim, D.H. (2008), "Solving local minima problem with large number of hidden nodes on two layered feed forward artificial neural networks", Neurocomputing, 71, 3640- 3643. https://doi.org/10.1016/j.neucom.2008.04.004
- Doukim, C.A., Dargham, J.A. and Chekima, A. (2010), "Finding the number of hidden neurons for an MLP neural network using coarse to fine search technique", Proceedings of the IEEE 10th Int. Conf. on Information Science, Signal Processing and their Applications.
- Fujita, O. (1998), "Statistical estimation of the number of hidden units for feed forward neural networks", Neural Networks, 11(5), 851-859. https://doi.org/10.1016/S0893-6080(98)00043-4
- Grewal, B.S. (2007), Higher engineering mathematics, Khanna Publishers, 40th Ed., New Delhi.
- Hagiwara, M. (1996), "A Simple and effective method for removal of hidden units and weights", Neuro Comput., 6(2), 207-218.
- Han, M. and Yin, J. (2008), "The hidden neurons selection of the wavelet networks using Support vector machines and ridge regression", Neurocomputing, 72(1-3), 471-479. https://doi.org/10.1016/j.neucom.2007.12.009
- Hunter, D., Yu, H., Pukish, M.S., Kolbusz, J. and Wilamowski, B.M. (2012), "Selection of proper neural network sizes and architectures- a comparative study", IEEE T. Ind. Inform., 8(2), 228-240. https://doi.org/10.1109/TII.2012.2187914
- Islam, M. and Murase, K. (2011), "A new algorithm to design compact two hidden layer artificial neural network", Neural Networks, 14(9), 1265-1278.
- Ke, J. and Liu, X. (2008), "Empirical analysis of optimal hidden neurons in neural network modeling for stock prediction", Proceedings of the IEEE Pacific Asia Workshop on Computa. Intel. and Indust. App.
- Keeni, K. and Kenji, N, (1999), Estimation of initial weights and hidden units for fast learning of multi layer neural networks for pattern classification, Dept. of Infor. Systems & Quantitative Sciences, Japan.
- kurkova, V., Kainen, P.C. and kreinovich, V. (1997), "Estimates of the number of hidden units and variation with respect to half spaces", Neural Networks, 10(6),1061-1068. https://doi.org/10.1016/S0893-6080(97)00028-2
- Lan, Y., Soh, Y.C. and Huang, G.B. (2010), "Constructive hidden nodes selection of extreme learning machine for regression", Neurocomputing, 73(16-18) 3191-3199. https://doi.org/10.1016/j.neucom.2010.05.022
- Li, J.Y., Chow, T.W.S. and Yu, Y.L. (1995), "The estimation theory and optimization algorithm for the number of hidden units in the higher order feedforward neural network", Neural Networks, 3, 1228- 1233.
- Liu, Y., Starzyk, J.A. and Zhu, Z. (2007), "Optimizing number of hidden neurons in neural networks", Proceedings of the IASTED Int Conf .
- Panchal, G., Ganatra, A., Kosta, Y.P. and Panchal, D. (2011), "Behaviour analysis of multilayer perceptrons with multiple hidden neurons and hidden layers", Int.J. Comput. Theory Eng., 3, 332-337.
- Sartori, M.A. and Antsaklis, P.J. (1991), "A simple method to derive bounds on the size and to train multilayer neural networks", IEEE T. Neural Networ., 2(4), 467-471. https://doi.org/10.1109/72.88168
- Sivanandam, S.N., Sumathi, S. and Deepa, S.N. (2008), Introduction to neural networks using Matlab 6.0, Tata McGraw Hill, 1st Ed.
- Sun, J. (2012), "Learning algorithm and hidden node selection scheme for local Coupled feed forward neural network classifier", Neurocomputing, 79, 158-163. https://doi.org/10.1016/j.neucom.2011.09.019
- Tamura, S. and Tateishi, M. (1997), "Capabilities of a four layered feed forward neural network: four layers versus three", IEEE T. Neural Networ., 8(2), 251-255. https://doi.org/10.1109/72.557662
- Trenn, S. (2008), "Multilayer perceptrons: approximation order and necessary number of hidden units", IEEE T. Neural Networ., 19(5), 836-844. https://doi.org/10.1109/TNN.2007.912306
- Xu, S. and Chen, L. (2008), "A novel approach for determining the optimal number of hidden layer neurons for FNN's and its application in data mining", Proceedings of the 5th Int. Conf. on Inform. Techn. and Appln.
- Zeng, X., and Yeung, D.S.(2006), "Hidden neuron pruning of multilayer perceptrons using a quantified sensitivity measure", Neurocomputing, 69(7-9)825-837. https://doi.org/10.1016/j.neucom.2005.04.010
- Zhang, Z., Ma, X. and Yang, Y. (2003), "Bounds on the number of hidden neurons in three layers Binary neural networks", Neural Networks, 16(7), 995-1002. https://doi.org/10.1016/S0893-6080(03)00006-6
Cited by
- An integrator based wind speed estimator for wind turbine control vol.21, pp.4, 2015, https://doi.org/10.12989/was.2015.21.4.443