DOI QR코드

DOI QR Code

Crack location in beams by data fusion of fractal dimension features of laser-measured operating deflection shapes

  • Bai, R.B. (Department of Engineering Mechanics, Hohai University) ;
  • Song, X.G. (School of Electrical and Electronic Engineering, Newcastle University) ;
  • Radzienski, M. (Institute of Fluid-Flow Machinery, Polish Academy of Sciences) ;
  • Cao, M.S. (Department of Engineering Mechanics, Hohai University) ;
  • Ostachowicz, W. (Institute of Fluid-Flow Machinery, Polish Academy of Sciences) ;
  • Wang, S.S. (Department of Engineering Mechanics, Hohai University)
  • 투고 : 2013.11.20
  • 심사 : 2014.04.22
  • 발행 : 2014.06.25

초록

The objective of this study is to develop a reliable method for locating cracks in a beam using data fusion of fractal dimension features of operating deflection shapes. The Katz's fractal dimension curve of an operating deflection shape is used as a basic feature of damage. Like most available damage features, the Katz's fractal dimension curve has a notable limitation in characterizing damage: it is unresponsive to damage near the nodes of structural deformation responses, e.g., operating deflection shapes. To address this limitation, data fusion of Katz's fractal dimension curves of various operating deflection shapes is used to create a sophisticated fractal damage feature, the 'overall Katz's fractal dimension curve'. This overall Katz's fractal dimension curve has the distinctive capability of overcoming the nodal effect of operating deflection shapes so that it maximizes responsiveness to damage and reliability of damage localization. The method is applied to the detection of damage in numerical and experimental cases of cantilever beams with single/multiple cracks, with high-resolution operating deflection shapes acquired by a scanning laser vibrometer. Results show that the overall Katz's fractal dimension curve can locate single/multiple cracks in beams with significantly improved accuracy and reliability in comparison to the existing method. Data fusion of fractal dimension features of operating deflection shapes provides a viable strategy for identifying damage in beam-type structures, with robustness against node effects.

키워드

참고문헌

  1. An, Y.H. and Ou, J.P. (2012), "Experimental and numerical studies on damage localization of simply supported beams based on curvature difference probability method of waveform fractal dimension", J. Intel. Mater. Syst. Str., 23(4), 415-426. https://doi.org/10.1177/1045389X11434172
  2. Bai, R.B., Cao, M.S., Su, Z.Q. Ostachowicz, W. and Xu, H. (2012), "Fractal dimension analysis of higher-order mode shapes for damage identification of beam structures", Math. Probl. Eng., 2012, 1-16.
  3. Bai, R.B., Ostachowicz, W., Cao, M.S. and Su, Z. (2014), "Crack detection in beams in noisy conditions using scale fractal dimension analysis of mode shapes", Smart Mater. Struct., 23(6), 065014. https://doi.org/10.1088/0964-1726/23/6/065014
  4. Cao, M.S., Ren, Q.W. and Qiao P.Z. (2006), "Nondestructive assessment of reinforced concrete structures based on fractal damage characteristic factors", J. Eng. Mech. - ASCE, 132(9), 924-931. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:9(924)
  5. Cao, M.S. and Qiao, P.Z. (2009), "On the wavelet-fractal nonlinear damage diagnosis of mechanical systems", Smart Mater. Struct., 18(8), 085022. https://doi.org/10.1088/0964-1726/18/8/085022
  6. Cao, M.S. and Qiao, P.Z. (2009), "Novel Laplacian scheme and multiresolution modal curvatures for structural damage identification", Mech. Syst. Signal Pr., 23(4), 1223-1242. https://doi.org/10.1016/j.ymssp.2008.10.001
  7. Cao, M.S., Cheng, L., Su, Z.Q. and Xu, H. (2012), "A multi-scale pseudo-force model in wavelet domain for identification of damage in structural components", Mech. Syst. Signal Pr., 28, 638-659. https://doi.org/10.1016/j.ymssp.2011.11.011
  8. Cao, M.S., Su, Z.Q, Cheng, L. and Xu, H. (2013), "A multi-scale pseudo-force model for characterization of damage in beam components with unknown material and structural parameters", J. Sound Vib., 332(21), 5566-5583. https://doi.org/10.1016/j.jsv.2013.05.002
  9. Cao, M.S., Ye, L., Zhou, L.M., Su, Z.Q. and Bai, R.B. (2011), "Sensitivity of fundamental mode shape and static deflection for damage identification in cantilever beams", Mech. Syst. Signal Pr., 25(2), 630-643. https://doi.org/10.1016/j.ymssp.2010.06.011
  10. Farhidzadeh, A., Dehghan-Niri, E., Moustafa, A., Salamone, S. and Whittaker, A. (2013), "Damage assessment of reinforced concrete structures using fractal analysis of residual crack patterns", Experimental Mech., 53(9), 1607-1619. https://doi.org/10.1007/s11340-013-9769-7
  11. Fayyadh, M.M. and Razak, H.A. (2013), "Damage identification and assessment in RC structures using vibration data: a review", J. Civil Eng. Management, 19(3), 375-386. https://doi.org/10.3846/13923730.2012.744773
  12. Federico C. (2013), "A Review of data fusion techniques", The Scientific World Journal, Article ID 704504, 19 pages.
  13. Fugate, M.L., Sohn, H. and Farrar, C.R. (2001), "Vibration-based damage detection using statistical process control", Mech. Syst. Signal Pr., 15(4), 707-721. https://doi.org/10.1006/mssp.2000.1323
  14. Hadjileontiadis, L.J., Doukab, E. and Trochidis, A. (2005), "Fractal dimension analysis for crack identification in beam structures", Mech. Syst. Signal Pr., 19(3), 659-674. https://doi.org/10.1016/j.ymssp.2004.03.005
  15. Hadjileontiadis, L.J. and Doukab, E. (2007), "Crack detection in plates using fractal dimension", Eng. Struct., 29(7), 1612-1625. https://doi.org/10.1016/j.engstruct.2006.09.016
  16. Inman, D.J. (2000), Engineering vibration, Prentice Hall, Upper Saddle River.
  17. Katz, M.J. (1988), "Fractals and the analysis of waveforms", Comput. Biol. Med., 18(3), 145-156. https://doi.org/10.1016/0010-4825(88)90041-8
  18. Li, H., Bao, Y.Q. and Ou, J.Q. (2008), "Structural damage identification based on integration of information fusion and Shannon entropy", Mech. Syst. Signal Pr., 22(6) 1427-1440.
  19. Li, H., Huang, Y., Ou, J. and Bao, Y. (2011), "Fractal dimension-based damage detection method for beams with a uniform cross-section", Comput. - Aided Civil Infrastruct. Eng., 26(3), 190-206. https://doi.org/10.1111/j.1467-8667.2010.00686.x
  20. Li, H., Tao, D., Huang, Y. and Bao, Y. (2013), "A data-driven approach for seismic damage detection of shear-type building structures using the fractal dimension of time-frequency features", Struct. Control Health Monit., 20(9), 1191-1210. https://doi.org/10.1002/stc.1528
  21. Li, P., Gu, H.C., Song, G.B., Zheng, R. and Mo, Y. L. (2010), "Concrete structural health monitoring using piezoceramic-based wireless sensor networks", Smart Struct. Syst., 6(5-6), 731-748. https://doi.org/10.12989/sss.2010.6.5_6.731
  22. Pai, P.F. and Young, L.G. (2001), "Damage detection of beams using operating deflection shapes", Int. J. Solids Struct., 38(18), 3161-3192. https://doi.org/10.1016/S0020-7683(00)00274-2
  23. Pandey, A.K., Biswas, M. and Samman, M.M. (1991), "Damage detection from changes in curvature mode shapes", J. Sound Vib., 145 (2), 321-332. https://doi.org/10.1016/0022-460X(91)90595-B
  24. Parloo, E., Guillaume, P. and Overmeire, M.V. (2003), "Damage assessment using mode shape sensitivities", Mech. Syst. Signal Pr., 17(3), 499-518. https://doi.org/10.1006/mssp.2001.1429
  25. Qiao, P.Z. and Cao, M.S. (2008), "Waveform fractal dimension for modal vibration-type-based damage identification of beam-type structures", Int. J. Solids Struct., 45(22-23), 5946-5961. https://doi.org/10.1016/j.ijsolstr.2008.07.006
  26. Ren, W.X. and Roeck, G.D. (2002), "Structural damage identification using modal data. I: simulation verification", J. Struct. Eng. - ASCE, 128(1), 87-95. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:1(87)
  27. Ren, W. X. and Roeck, G.D. (2002), "Structural damage identification using modal data. II: test verification", J. Struct. Eng. - ASCE, 128(1), 96-104. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:1(96)
  28. Roy, K. and Ray-Chaudhuri, S. (2013), "Fundamental mode shape and its derivatives in structural damage localization", J. Sound Vib., 332(21), 5584-5593. https://doi.org/10.1016/j.jsv.2013.05.003
  29. Salawu, O.S. and Williams, C. (1994), "Damage location using vibration mode shapes", Proceedings of the 12th IMAC, Honolulu, Hawaii, USA.
  30. Sazonov, E. and Klinkhachorn, P. (2005), "Optimal spatial sampling interval for damage detection by curvature or strain energy mode shapes", J. Sound Vib., 285(4-5), 783-801. https://doi.org/10.1016/j.jsv.2004.08.021
  31. Shi Z.Y., Law S.S. and Zhang L.M. (2000), "Structural damage detection from modal strain energy change", J. Eng. Mech. - ASCE, 126(12), 1216-1223. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1216)
  32. Sohn, H., Kim, S.D. and Harries, K. (2008), "Reference-free damage classification based on cluster analysis", Comput. -Aided Civil Infrastruct. Eng., 23(5), 324-338. https://doi.org/10.1111/j.1467-8667.2008.00541.x
  33. Su, Z.Q., Wang, X.M., Cheng, L., Yu, L. and Chen, Z.P. (2009), "On selection of data fusion schemes for structural damage evaluation", Struct. Health Monit., 8(3), 223-241. https://doi.org/10.1177/1475921708102140
  34. Su, Z.Q., Ye, L. and Bu, X.Z. (2002), "A damage identification technique for CF/EP composite laminates using distributed piezoelectric transducers", Compos. Struct., 57(1-4), 465-471. https://doi.org/10.1016/S0263-8223(02)00115-0
  35. Waldron, K., Ghoshal, A., Schulz, M.J., Sundaresan, M.J., Ferguson, F., Pai P.F. and Chung, J.H. (2002), "Damage detection using finite element and laser operating deflection shapes", Finite Elem. Anal. Des., 38(3), 193-226. https://doi.org/10.1016/S0168-874X(01)00061-0
  36. Wang, J.L. and Qiao, P.Z. (2007), "Improved damage detection for beam-type structures using a uniform load surface", Struct. Health Monit., 6(2), 99-110. https://doi.org/10.1177/1475921706072062
  37. Wang, S.S., Ren, Q.W. and Qiao, P.Z. (2006), "Structural damage detection using local damage factor", J. Vib. Control, 12(9), 955-973. https://doi.org/10.1177/1077546306068286
  38. Wang, Q. and Wu, N. (2011), "Detecting the delamination location of a beam with a wavelet transform: an experimental study", Smart Mater. Struct., 20(1) doi:10.1088/0964-1726/20/1/012002.
  39. Xiang, J.W., Matsumoto, T., Wang, Y.X. and Jiang, Z.S. (2013), "Detect damages in conical shells using curvature mode shape and wavelet finite element method", Int. J. Mech. Sci., 66, 83-93. https://doi.org/10.1016/j.ijmecsci.2012.10.010
  40. Xu, G.Y., Zhu, W.D. and Emory, B.H. (2007), "Experimental and numerical investigation of structural damage detection using changes in natural frequencies", J. Vib. Acoust., 129(6), 686-700. https://doi.org/10.1115/1.2731409
  41. Xu, W., Radzienski, M., Ostachowicz, W. and Cao, M.S. (2013), "Damage detection in plates using two-dimensional directional Gaussian wavelets and laser scanned operating deflection shapes", Struct. Health Monit., 12(5-6), 457-468. https://doi.org/10.1177/1475921713492365
  42. Yang, Z.B., Chen, X.F., Tian, S.H. and He, Z.J. (2012), "Multiple damages detection in beam based approximate waveform capacity dimension", Struct. Eng. Mech., 41(5), 663-673. https://doi.org/10.12989/sem.2012.41.5.663
  43. Zhang, C.L., Li, B., Yang, Z.B. Xiao, W.R. and He, Z.J. (2013), "Crack location identification of rotating rotor systems using operating deflection shape data", Sci. China-Technol. Sci., 332(21), 5566-5583.
  44. Zhong, S.C. and Oyadiji, S.O. (2011), "Detection of cracks in simply-supported beams by continuous wavelet transform of reconstructed modal data", Comput. Struct., 89(1-2), 127-148. https://doi.org/10.1016/j.compstruc.2010.08.008
  45. Zhou, L., Sun, H. and He, Z.Q. (2013), "Fractal dimension-based damage imaging for composites", Shock Vib., 20(5), 979-998. https://doi.org/10.1155/2013/164539

피인용 문헌

  1. A concept of complex-wavelet modal curvature for detecting multiple cracks in beams under noisy conditions vol.76-77, 2016, https://doi.org/10.1016/j.ymssp.2016.01.012
  2. Damage detection of structures with detrended fluctuation and detrended cross-correlation analyses vol.26, pp.3, 2017, https://doi.org/10.1088/1361-665X/aa59d7
  3. Multiscale simulation of major crack/minor cracks interplay with the corrected XFEM vol.17, pp.2, 2017, https://doi.org/10.1016/j.acme.2016.12.001
  4. Crack identification of beam structures using homotopy continuation algorithm vol.25, pp.2, 2017, https://doi.org/10.1080/17415977.2016.1141206
  5. Data fusion approaches for structural health monitoring and system identification: Past, present, and future pp.1741-3168, 2018, https://doi.org/10.1177/1475921718798769
  6. Detecting width-wise partial delamination in the composite beam using generalized fractal dimension vol.19, pp.1, 2017, https://doi.org/10.12989/sss.2017.19.1.091
  7. Identification of Delamination in Composite Beams using the Fractal Dimension-Based Damage Identification Algorithm vol.2017, pp.9, 2014, https://doi.org/10.1515/fas-2017-0001