References
- AASHTO-LRFD (2012), AASHTO LRFD Bridge Design Specifications. Highway Subcommittee on Bridges and Structures.
- ACI-216 (1997), Standard method for determining fire resistance of concrete and mansonry construction assemblies, American Concrete Institute.
- ACI-318 (2008), Building code requirements for structural concrete and commentary, American Concrete Institute.
- ASCE (1992), Structural fire protection, New York: ASCE Manual and Reports on Engineering Practice.
- ASTM-E119 (2000), Standard test methods for fire tests of building construction and material, American Society for Testing and Materials.
- Bentz, D., Vecchio, F.J. and Collins, M.P. (2006), "Simplifed modified compression field theory for calculating shear strength of reinforced concrete elements", ACI Struct. J., 103(65), 614-624.
- Brancherie, D. and Ibrahimbegovic, A. (2009), "Novel anisotropic continuum-discrete damage model capable of representing localized failure of massive structures. Part I: theoretical formulation and numerical", Int. J. Comput. Aided Eng. Softw., 26, 100-127. https://doi.org/10.1108/02644400910924825
- Capua, D.D. and Mari, A.R. (2007), "Nonlinear analysis of reinforced concrete cross-section exposed to fire", Fire Safety J., 103(4), 139-149.
- Cramer, F., Kowalsky, U. and Dinkler, D. (2014), "Coupled chemical and mechanical processes in concrete structures with respect to aging", Coupled Syst. Mech., 3(1), 53-71. https://doi.org/10.12989/csm.2014.3.1.053
- Dwaikat, M. and Kodur, V.K.P. (2008), "A numerical approach for modeling the fire induced restraint effects in reinforced concrete beams", Fire Safety J., 43, 291-307. https://doi.org/10.1016/j.firesaf.2007.08.003
- EN-1992-1-2 (2000), Eurocode 2: design of concrete structure - Part 1-2: general rules- structural fire design, Eurocode.
- Hsu, J.H. and Lin, C.S. (2006), "Residual bearing capabilities of fire-exposed reinforced concrete beams", Int. J. Appl. Sci. Eng., 4, 151-163.
- Ibrahimbegovic, A. (2009), Nonlinear solid mechanics: theoretical formulation and finite element solution methods, Springer.
- Ibrahimbegovic, A. and Wilson, E.L. (1991), "A modified method of incompatible modes", Commun. Appl. Mech.Method., 187-194.
- Ibrahimbegovic, A. and Frey, F. (1993), "Stress resultant finite element analysis of reinforced concrete plates", Eng. Comput., 10(1), 15-30. https://doi.org/10.1108/eb023892
- Ibrahimbegovic, A., Hajdo, E. and Dolarevic, S. (2013), "Linear instability or buckling problems for mechanical and coupled thermomechanical extreme conditions", Coupled Syst. Mech., 2(4), 349-374. https://doi.org/10.12989/csm.2013.2.4.349
- Kodur, V.K.P. and Dwaikat, M. (2008), "A numerical model for predicting the fire resistance of reinforced concrete beams", Cement Concrete Compos., 30(5), 431-443. https://doi.org/10.1016/j.cemconcomp.2007.08.012
- Le, T.T.H. (2011), Etude multi-echelles du comportement Thermo-Hydro-Mecanique des materiaux cimentaires, Approche morphologique pour la prise en compte de la mesostructure. France: Universite Paris-Est.
- Nielsen, C.V., Chris, J.P. and Nenad, B. (2004), "Improved phonomenological modelling of transient thermal strains for concrete at high temperatures", Comput. Concrete., 1, 189-209. https://doi.org/10.12989/cac.2004.1.2.189
- Ngo, V.M., Ibrahimbegovic, A. and Hajdo, E. (2014), "Nonlinear instability problems including localized plastic failure and large deformations for extreme thermomechanical load", Coupled Syst. Mech., 3(1), 89-110. https://doi.org/10.12989/csm.2014.3.1.089
- Ostermann, L. and Dinkler, D. (2014), "Modelling and numerical simulation of concrete structures subject to high temperatures", Coupled Syst. Mech., 3(1), 72-110.
- Pham, B.H., Davenne, L., Brancherie, D. and Ibrahimbegovic, A. (2010), "Stress resultant model for ultimate load design of reinforced concrete frames: combined axial force and bending moment", Comput. Concrete, 303-315.
- Pham, B.H., Brancherie, D., Davenne, L. and Ibrahimbegovic, A. (2013), "Stress-resultant models for ultimate load design of reinforced concrete frames and multi-scale parameter estimates", Comput. Mech., 51(3), 347-360. https://doi.org/10.1007/s00466-012-0734-6
- Vecchio, F.J. and Collins, M.P. (1992), "Predicting the response of reinforced concrete beams subjected to shear using compression field theory", ACI Struct. J., 1988, 258-268.
- Vecchio, F.J. and Emara, M.B. (1993), "Shear deformation in reinforced concrete frames", ACI Struct. J., 46-56.
- Vecchio, F.J. and Collins, M.P. (1988), "Predicting the response of reinforced concrete beams subjected to shear using compression field theory", ACI Structural Journal., 258-268.
- Xavier, H.F.B. (2009), Analysis of reinforced concrete frames exposed to fire: based on advanced calculation methods, Porto: Universidade do Porto.
Cited by
- Coupling of nonlinear models for steel-concrete interaction in structural RC joints vol.3, pp.2, 2014, https://doi.org/10.12989/csm.2014.3.2.195
- Evaluation on mechanical enhancement and fire resistance of carbon nanotube (CNT) reinforced concrete vol.6, pp.3, 2014, https://doi.org/10.12989/csm.2017.6.3.335
- Thermo-mechanical analysis of reinforced concrete slab using different fire models vol.9, pp.2, 2014, https://doi.org/10.12989/csm.2020.9.2.163