DOI QR코드

DOI QR Code

Modeling of coupled THMC processes in porous media

  • Received : 2014.01.11
  • Accepted : 2014.03.15
  • Published : 2014.03.25

Abstract

For landfill monitoring and aftercare, long-term prognoses of emission and deformation behaviour are required. Landfills may be considered as heterogeneous porous soil-like structures, in which flow and transport processes of gases and liquids interact with local material degradation and mechanical deformation of the solid skeleton. Therefore, in the framework of continuous porous media mechanics a model is developed that permits the investigation of coupled mechanical, hydraulical and biochemical processes in municipal solid waste landfills.

Keywords

References

  1. de Boer, R. (2005), Trends in continuum mechanics of porous media, Springer.
  2. Bowen, R. (1976), Continuum physics. Theory of Mixtures, (Ed. Eringen, A.), Acad. Press New York.
  3. Brooks, R.H. and Corey, A. (1966), "Properties of porous media affecting fluid flow", J. Irrig. Drain. Div., 92(IR2), 61-88.
  4. Burdine, N. (1953), "Relative permeability calculations from pore-size distribution data", Petroleum Transactions AIME, 198, 71-78.
  5. Durmusoglu, E., Corapcioglu, M.Y. and Tuncay, K. (2005), "Landfill settlement with decomposition and gas generation", J. Environ. Eng. - ASCE, 131(9), 1311-1321. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:9(1311)
  6. Donea, J., Huerta, A., Ponthot, J. and Rodriguez-Ferran, A. (2004), "Arbitrary Lagrangian-Eulerian methods", Encyclop. Comput. Mech., 1, 1-25.
  7. Ebers-Ernst, J. (2001), Modellierung des Inelastischen Verformunsverhaltens von Siedlungsabfalldeponien, Ph.D. Thesis, Institut fur Statik, Braunschweig.
  8. Elagroudy, S.A., Warith, M.A. and Ghobrial, F.H. (2008), Solid waste settlement in landfills/bioreactor landfills, in: waste management research trends, Nova Science Pub Inc.
  9. El-Fadel, M., Findikakis, A. and Leckie, J. (1996a), "Numerical modeling of generation and transport of gas and heat in landfills I. model formulation", Waste Manage. Res., 14(5), 483-504. https://doi.org/10.1177/0734242X9601400506
  10. El-Fadel, M., Findikakis, A. and Leckie, J. (1996b), "Numerical modeling of generation and transport of gas and heat in sanitary landfills II. model application", Waste Manage. Res., 14(6), 537-551. https://doi.org/10.1177/0734242X9601400603
  11. El-Fadel, M. and Khoury, R. (2000), "Modelling settlement in msw landfills: a critical review", Crit. Rev. Env. Sci. Tech., 30(3), 327-361. https://doi.org/10.1080/10643380091184200
  12. Garcia de Cortazar, A.L., Lantaron, J.H., Fernandez, O.M., Monzon, I.T. and Lamia, M.F. (2002a), "Modelling for environmental assessment of municipal solid waste landfills (Part I: Hydrology)", Waste Manage. Res., 20(2), 198-210. https://doi.org/10.1177/0734242X0202000211
  13. Garcia de Cortazar, A.L., Lantaron, J.H., Fernandez, O.M., Monzon, I.T. and Lamia, M.F. (2002b), "Modelling for environmental assessment of municipal solid waste landfills (Part II: Biodegradation)", Waste Manage. Res., 20(6), 514-528. https://doi.org/10.1177/0734242X0202000605
  14. vanGenuchten, M. (1980), "A closed-form equation for predicting the hydraulic conductivity of unsaturated 6soils", Soil Sci. Soc. Am. J., 44(5), 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  15. Haarstrick, A., Hempel, D.C., Ostermann, L., Ahrens, H. and Dinkler, D. (2001), "Modelling of the biodegradation of organic matter in municipal landfills", Waste Manage. Res., 19(4), 320-331. https://doi.org/10.1177/0734242X0101900409
  16. Hettiarachchi, C.H., Meegoda, J.N., Tavantzis, J. and Hettiaratchi, P. (2007), "Numerical model to predict settlements coupled with landfill gas pressure in bioreactor landfills, J. Hazard. Mater., 139(3), 514-522. https://doi.org/10.1016/j.jhazmat.2006.02.067
  17. Huber, R. and Helmig, R. (2000), "Node-centered finite volume discretizations for the numerical simulation of multiphase flow in heterogeneous porous media", Computat. Geosci., 4, 141-164. https://doi.org/10.1023/A:1011559916309
  18. Ivanova, L. (2007), Quantification of factors affecting rate and magnitude of secondary settlement of landfills, Ph.D. Thesis, School of Civil Engineering and the Environment, Southampton.
  19. Kindlein, J., Dinkler, D. and Ahrens, H. (2006), "Numerical modeling of multiphase flow and transport processes in landfills", Waste Manage. Res., 24(4), 376-387. https://doi.org/10.1177/0734242X06065506
  20. Krase, V., Kowalsky, U., Bente, S., Dinkler, D. (2009), "Coupling Biodegradation models of varying complexity with transport processes in landfills", Proceedings of the 12th Intern. Waste Man. and Landfill Symp., Sardinia.
  21. Krase, V., Bente, S., Kowalsky, U. and Dinkler, D. (2011), "Modelling the stress deformation behaviour of municipal solid waste", Geotechnique, 61(8), 665-675. https://doi.org/10.1680/geot.8.P.140
  22. Lewis, R. and Schrefler, B.A. (1998), The finite element method in the static and dynamic deformation and consolidation of porous media, John Wiley & Sons.
  23. Lobo, A., Lopez, A., Cobo, N. and Tejero, I. (2008), "Simulation of municipal solid waste reactors using MODUELO", Waste Resour. Manage., 161(3), 99-104.
  24. Machado, S., Vilar, O. and Carvalho, M. (2008), "Constitutive model for long term municipal solid waste mechanical behavior", Comput. Geotech., 35(5), 775-790. https://doi.org/10.1016/j.compgeo.2007.11.008
  25. McDougall, J. (2007), "A hydro-bio-mechanical model for settlement and other behaviour in landfilled waste", Comput. Geotech., 34, 229-246. https://doi.org/10.1016/j.compgeo.2007.02.004
  26. Monod, J. (1949), "The growth of bacterial cultures", Annu. Rev. Microbiol., 3, 371-394. https://doi.org/10.1146/annurev.mi.03.100149.002103
  27. Mora-Naranjo, N. (2004), Analyse und Modellierung anaerober Abbauprozesse in Deponien, Ph.D. Thesis, Technische Universitat Carolo-Wilhelmina zu Braunschweig.
  28. Mualem, Y. (1976), "A new model for predicting the hydraulic conductivity of unsaturated porous media", Water Resour. Res., 12, 513-522. https://doi.org/10.1029/WR012i003p00513
  29. Powrie, W. and Beaven, R.P. (1999), "Hydraulic properties of household waste and implications for landfills", Proceedings of the Institution of Civil Engineers, Geotechnical Engineering.
  30. Oweis, I.S. (2006), "Estimate of landfill settlements due to mechanical and decompositional processes", J. Geotech. Geoenviron., 132(5), 644-650. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(644)
  31. Park, H. and Lee, S. (2002), "Long-term settlement behaviour of MSW landfills with various fill ages", Waste Manage. Res., 20, 259-268. https://doi.org/10.1177/0734242X0202000307
  32. Reichel, T. and Haarstrick, A. (2008), "Modelling decomposition of MSW using genetic algorithms", Waste Resour. Manage., 161(3), 113-120.
  33. Ricken, T. and Ustohalova, V. (2005), "Modeling of thermal mass transfer in porous media with applications to organic phase transition in landfills, Comput. Mater. Sci., 32, 498-508. https://doi.org/10.1016/j.commatsci.2004.09.015
  34. Ricken, T., Robeck, M. and Widmann, R. (2009), "A 3D-finite element simulation of biological conversion processes in landfills using a multiphase model based on the theory of porous media", Proceedings of the 12th International Waste Management and Landfill Symposium, Sardinia, Italy.
  35. Simoes, G. and Da Silva, F. (2011), "Calibration of a coupled mechanical and biological model for landfill settlement prediction based on field monitoring data", Proceedings of the 4th International Workshop Hydro-Physico-Mechanics of Landfills, Santander, Spain.
  36. Ustohalova, V., Ricken, T. and Widmann R. (2006), "Estimation of landfill emission lifespan using process oriented modeling", Waste Manage., 26(4), 442-450. https://doi.org/10.1016/j.wasman.2005.11.012
  37. Wall, D. and Zeiss, C. (1995), "Municipal landfill biodegradation and settlement", J. Environ. Eng. - ASCE, 121, 214-223. https://doi.org/10.1061/(ASCE)0733-9372(1995)121:3(214)
  38. White, J. (2008), "The application of ldat to the hpm2 challenge", Waste Resour. Manage., 161(4), 137-146.
  39. Yu, L., Batlle, F., Carrera, J. and Lloret, A. (2009), "Gas flow to a vertical gas extraction well in deformable MSW landfills", J. Hazard. Mater., 168(2-3), 1404-141. https://doi.org/10.1016/j.jhazmat.2009.03.045

Cited by

  1. Fluid-structure interaction problems solution by operator split methods and efficient software development by code-coupling vol.5, pp.2, 2016, https://doi.org/10.12989/csm.2016.5.2.145
  2. Model for degradation-induced settlements as part of a coupled landfill model vol.41, pp.12, 2017, https://doi.org/10.1002/nag.2687
  3. Models for drinking water treatment processes vol.8, pp.6, 2014, https://doi.org/10.12989/csm.2019.8.6.489
  4. Effects of Leachate Recirculation System Variables on Long-Term Bioreactor Landfill Performance Using Coupled Thermo-Hydro-Bio-mechanical Model vol.21, pp.5, 2014, https://doi.org/10.1061/(asce)gm.1943-5622.0001990