DOI QR코드

DOI QR Code

PUMP DESIGN AND COMPUTATIONAL FLUID DYNAMIC ANALYSIS FOR HIGH TEMPERATURE SULFURIC ACID TRANSFER SYSTEM

  • Choi, Jung-Sik (Graduate school of Korea Maritime and Ocean University) ;
  • Shin, Young-Joon (Korea Atomic Energy Research Institute) ;
  • Lee, Ki-Young (Korea Atomic Energy Research Institute) ;
  • Yun, Yong-Sup (Division of Marine Engineering System Korea Maritime and Ocean University) ;
  • Choi, Jae-Hyuk (Division of Marine Engineering System Korea Maritime and Ocean University)
  • Received : 2014.01.24
  • Accepted : 2014.04.24
  • Published : 2014.06.25

Abstract

In this study, we proposed a newly designed sulfuric acid transfer system for the sulfur-iodine (SI) thermochemical cycle. The proposed sulfuric acid transfer system was evaluated using a computational fluid dynamics (CFD) analysis for investigating thermodynamic/hydrodynamic characteristics and material properties. This analysis was conducted to obtain reliable continuous operation parameters; in particular, a thermal analysis was performed on the bellows box and bellows at amplitudes and various frequencies (0.1, 0.5, and 1.0 Hz). However, the high temperatures and strongly corrosive operating conditions of the current sulfuric acid system present challenges with respect to the structural materials of the transfer system. To resolve this issue, we designed a novel transfer system using polytetrafluoroethylene (PTFE, $Teflon^{(R)}$) as a bellows material for the transfer of sulfuric acid. We also carried out a CFD analysis of the design. The CFD results indicated that the maximum applicable temperature of PTFE is about 533 K ($260^{\circ}C$), even though its melting point is around 600 K. This result implies that the PTFE is a potential material for the sulfuric acid transfer system. The CFD simulations also confirmed that the sulfuric acid transfer system was designed properly for this particular investigation.

Keywords

References

  1. Richa Kothari, D. Buddhi, R.L. Sawhney, "Sources and technology for hydrogen production: a review", International Journal of Global Energy Issues, Vol. 21, pp. 154-178 (2004). https://doi.org/10.1504/IJGEI.2004.004707
  2. J. E. Funk, R. M. Reinstrom, "Energy Requirements in Production of Hydrogen from Water", Industrial & Engineering Chemistry Process Design and Development, Vol. 5(3), pp. 336-342 (1966). (DOI: 10.1021/i260019a025)
  3. K. Onuki, S. Shimizu, H. Nakajima, S. Fujita, Y. Ikezoe, S. Sato, S. Machi, "Studies on an iodine-sulfur process for thermochemical hydrogen production", Proceeding of the 8th World Hydrogen Energy Conference, Honolulu, pp. 547-556 (1990).
  4. H. Nakajima, K. Ikenoya, K. Onuki, S. Shimizu, "Closed-Cycle Continuous Hydrogen Production Test by Thermochemical SI Process", Kagaku Kogaku Ronbunshu, Vol. 24(2), pp. 352-355 (1998). (in Japanese) https://doi.org/10.1252/kakoronbunshu.24.352
  5. M. Sakurai, H. Nakajima, K. Onuki, K. Ikenoya, S. Shimizu, "Preliminary process analysis for the closed cycle operation of the iodine-sulfur thermochemical hydrogen production process", International Journal of Hydrogen Energy, Vol. 24(7), pp. 603-612 (1999). https://doi.org/10.1016/S0360-3199(98)00119-0
  6. Norman, J. H., Besenbruch, G. E., Brown, L. C., O'Keefe, D. R., Allen, C. L., "Thermochemical water-splitting cycle, bench-scale investigations, and process engineering. Final report, February 1977-December 31, 1981", Technical Report, GA-A-16713 (1982).
  7. Norman, J. H., G. E. Basenbruch, D. R. O'keefe, "Thermochemical water-splitting for hydrogen production", GRI-80/0105 (1981).
  8. G. E. BESENBRUCH, L. C. BROWN, J. F. FUNK, S. K. SHOWALTER, "HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER", General Atomic Project 30047, GA-A23510 (2000).
  9. Seiji Kasahara, Gab-Jin Hwang, Hayato Nakajima, Ho-Sang Choi, Kaoru Onuki, Mikihiro Nomura, "Effects of Process Parameters of the IS Process on Total Thermal Efficiency to Produce Hydrogen from Water", JOURNAL OF CHEMICAL ENGINEERING OF JAPAN Vol. 36(7), Special Issue for Energy Engineering, pp. 887-899 (2003). https://doi.org/10.1252/jcej.36.887
  10. Dokiya, M., Kameyama, T., Fukuda, K., Kotera, Y., "The study of thermochemical hydrogen preparation. III. An oxygenevolving step through the thermal splitting of sulfuric acid", Bulletin of The Chemical Society of Japan, Vol. 50(10), 2657-2660 (1977). https://doi.org/10.1246/bcsj.50.2657
  11. D. R. O'keefea, J. H. Normana, D. G. Williamson, "Catalysis Research in Thermochemical Water-Splitting Processes", Catalysis Reviews: Science and Engineering, Vol. 22(3), pp. 325-369 (1980). https://doi.org/10.1080/03602458008067537
  12. V. Barbarossa, S. Brutti, M. Diamanti, S. Sau, G. De Maria, "Catalytic thermal decomposition of sulphuric acid in sulphur-iodine cycle for hydrogen production", International Journal of Hydrogen Energy, Vol. 31(7), pp. 883-890 (2006). https://doi.org/10.1016/j.ijhydene.2005.08.003
  13. Ginosar, D. M., Glenn, A. W., Petkovic, L. M., "Stability of Sulfuric Acid Decomposition Catalysts for Thermochemical Water Splitting Cycles. Paper 76b, AIChE 2005 Spring National Meeting Overall Conference Proceedings (2005).
  14. Onuki, K., Ioka, I., Futakawa, M., Nakajima, H., Shimizu, S., Tayama, I., "Screening Tests on Materials of Construction for the Thermochemical IS Process", CORROSION ENGINEERING, Vol. 46(2), pp. 141-149 (1997).
  15. Daniel M. Ginosar, Lucia M. Petkovic, Kyle C. Burch, "Activity and stability of sulfuric acid decomposition catalysts for thermochemical water splitting cycles", American institute of chemical engineers national meeting. Cincinnati, OH. Paper 285d (2005).
  16. A. Giaconia, G. Caputo, A. Ceroli, M. Diamanti, V. Barbarossa, P. Tarquini, S. Sau, "Experimental study of two phase separation in the Bunsen section of the sulfur-iodine thermochemical cycle", International Journal of Hydrogen Energy, Vol. 32(5), pp. 531-536 (2007). https://doi.org/10.1016/j.ijhydene.2006.08.015
  17. Stephen Goldstein, Jean-Marc Borgard, Xavier Vitart, "Upper bound and best estimate of the efficiency of the iodine sulphur cycle", International Journal of Hydrogen Energy, Vol. 30(6), pp. 619-626 (2005). https://doi.org/10.1016/j.ijhydene.2004.06.005
  18. L. C. BROWN, R. D. LENTSCH, G. E. BESENBRUCH, K. R. SCHULTZ, J. E. FUNK, "ALTERNATIVE FLOWSHEETS FOR THE SULFUR-IODINE THERMOCHEMICAL HYDROGEN CYCLE", GA-A24266, pp. 1-14 (2003).
  19. Sauer-Danfoss Company, "Series 90 Axial Piston Pumps Technical Information", 520L0603(Rev. FC), pp. 9 (2008).
  20. DuPont Fluoroproducts, "Properties Handbook, Teflon$^{(R)}$ PTFE", 220313D, pp. 1-34.
  21. ANSYS Inc., Fluent 14.5 User's Guide, Canonsburg, PA, USA (2013).
  22. ANSYS Inc., Fluent 14.5 UDF Manual, Canonsburg, PA, USA (2013).
  23. L. C. BROWN, G. E. BESENBRUCH, R. D. LENTSCH, K. R. SCHULTZ, J. F FUNK, P. S. PICKARD, A. C. MARSHALL, S. K. SHOWALTER, "HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER FINAL TECHNICAL REPORT FOR THE PERIOD AUGUST 1, 1999 THROUGH SEPTEMBER 30, 2002", General Atomics Report GA-A24285, Rev. 1, pp. 3-6 - 3-21 (2003)
  24. ANSYS Inc., Fluent 14.5 Theory Guide, Canonsburg, PA, USA (2013).
  25. http://en.wikipedia.org/wiki/Polytetrafluoroethylene
  26. The European Stainless Steel Development Association, "Stainless Steel: Tables of Technical Properties", Materials and Applications Series, Volume 5, pp. 18 (2007).