DOI QR코드

DOI QR Code

폴리(메틸 메타크릴레이트)-개질된 전분과 스티렌-부타디엔 고무의 혼합에서 커플링제 메틸렌 디이소시아네이트의 효과

Effect of Coupling Agent, Methylene Diisocyanate, in the Blending of Poly(methyl methacrylate)-Modified Starch and Styrene-Butadiene Rubber

  • 이미춘 (한국기술교육대학교 에너지.신소재.화학공학부) ;
  • 조을룡 (한국기술교육대학교 에너지.신소재.화학공학부)
  • Li, Mei-Chun (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Cho, Ur Ryong (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education)
  • 투고 : 2014.02.27
  • 심사 : 2014.03.14
  • 발행 : 2014.06.30

초록

메틸렌 디이소시아네이트(MDI)가 폴리(메틸 메타크릴레이트)-개질된 전분/스티렌-부타디엔 고무(PMMA-modified starch/SBR) 복합체의 물성을 향상시키기 위하여 새로운 개질제로 조사되었다. 한쪽에는 우레탄 결합의 형성으로 인해 다른 한쪽에는 ${\pi}-{\pi}$ 접착 때문에 MDI는 PMMA-modified starch/SBR 계면에서 중간 결합 역할을 하는 것이 형태학적, 기계적, 동역학적 그리고 열적 분해 연구에 의하여 증명되었다. 결과적으로, MDI의 존재는 PMMA-modified starch/SBR 복합체의 기계적 물성과 열적 안정성을 괄목할만하게 개선하였다. 게다가, 생성된 MDI/PMMA-modified starch/SBR 복합체의 여러 가지 물성에 대한 전분 함량의 효과가 형태학, 가황 특성, 기계적 물성, 톨루엔 팽윤 거동, 그리고 열적 안정성에서 조사되었고 자세하게 논의되었다. MDI/PMMA-modified starch/SBR 복합체는 carbon black/SBR(CB/SBR) 복합체보다 우수한 물성을 보였고, 고무 배합물에서 CB의 대체물로서 재생 가능한 전분의 유력한 사용을 보여주었다.

Methylene diisocyanate (MDI) was investigated as a novel interfacial modifier to enhance the performances of poly(methyl methacrylate)-modified starch/styrene-butadiene rubber (PMMA-modified starch/SBR) composites. Owing to the formation urethane linkage on one side and ${\pi}-{\pi}$ adhesion on the other side, MDI acted as an intermediated linkage role in the PMMA-modified starch/SBR interfaces, which was evidenced by the morphological, mechanical, dynamic mechanical and thermal decomposition studies. As a result, the presence of MDI significantly improved the mechanical properties and thermal stability of PMMA-modified starch/SBR composites. In addition, the effect of starch concentration on the various performances of the resulted MDI/PMMA-modified starch/SBR composites, such as morphology, vulcanization characteristics, mechanical properties, toluene swelling behavior, and thermal stability were investigated and discussed in detail. The obtained MDI/PMMA-modified starch/SBR composites exhibited superior mechanical properties to carbon black/SBR (CB/SBR) composites, demonstrating the potential use of the renewable starch as a substitute for CB in the rubber compounds.

키워드

참고문헌

  1. Y. P. Wu, M. Q. Ji, Q. Q, Y. Q. Wang, L. Q. Zhang, "Preparation, structure, and properties of starch/rubber composites prepared by co-coagulating rubber latex and starch paste", Macromol. Rapid. Commun., 26, 565 (2004).
  2. Y. P. Wu, Q. Qi, G. H. Liang, L. Q. Zhang, "A strategy to prepare high performance starch/rubber composites: In situ modification during latex compounding process", Carbohyd. Polym., 65, 109 (2006). https://doi.org/10.1016/j.carbpol.2005.12.031
  3. H. Tang, Q. Qi, Y. P. Wu, G. Liang, L. Q. Zhang, J. Ma, "Reinforcement of elastomer by starch", Macromol. Mater. Eng., 291, 629 (2006). https://doi.org/10.1002/mame.200600033
  4. Q. Qi, Y. P. Wu, M. Tian, G. H. Liang, L. Q. Zhang, J. Ma, "Modification of starch for high performance elastomer", Polymer, 47, 3896 (2006). https://doi.org/10.1016/j.polymer.2006.03.095
  5. C. Liu, Y. Shao, D. Jia, "Chemically modified starch reinforced natural rubber composites", Polymer, 49, 2176 (2008). https://doi.org/10.1016/j.polymer.2008.03.005
  6. C. Nakason, A. Kaesaman, K. Eardrod. "Cure and mechanical properties of natural rubber-g-poly(methyl methacrylate)-cassava starch compounds", Matter. Lett., 59, 4020 (2005). https://doi.org/10.1016/j.matlet.2005.07.057
  7. P. M. Visakh, S. Thomas, K. Oksman, A. P. Mathew, "Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: processing and mechanical/ thermal properties", Compos. Part A, 43, 735 (2012). https://doi.org/10.1016/j.compositesa.2011.12.015
  8. X. Cao, C. Xu, Y. Wang, Y. Liu, Y. Chen, "New nanocomposite materials reinforced with cellulose nanocrystals in nitrile rubber", Polym. Test., 32, 819 (2013). https://doi.org/10.1016/j.polymertesting.2013.04.005
  9. B. Kosikova, A. Gregorova, A. Osvald, J. Krajcovicova, "Role of lignin filler in stabilization of natural rubber-based composites", J. Appl. Polym. Sci., 103, 1226 (2007). https://doi.org/10.1002/app.24530
  10. H. Ismail, S. M. Shaari, N. Othman, "The effect of chitosan loading on the curing characteristics, mechanical and morphological properties of chitosan-filled natural rubber (NR), epoxidised natural rubber (ENR) and styrene-butadiene rubber (SBR) compounds", Polym. Test., 30, 784 (2011). https://doi.org/10.1016/j.polymertesting.2011.07.003
  11. Z. A. M. Ishak, H. Ismail, "An investigation on the potential of rice husk ash as fillers for epoxidized natural rubber (ENR)", Eur. Polym. J., 31, 259 (1995). https://doi.org/10.1016/0014-3057(94)00156-1
  12. Z. H. Ooi, H. Ismail, A. A. Bakar, "Synergistic effect of oil palm ash filled natural rubber compound at low filler loading, Polym. Test., 32, 38 (2013). https://doi.org/10.1016/j.polymertesting.2012.09.007
  13. F. G. Corvasce, T. D. Linster, G. Thielen, "Starch composite reinforced rubber composition and tire with at least one component thereof", U. S. Patent 5, 672, 639 (1997).
  14. P. H. Sandstrom, "Rubber containing starch reinforcement and tire having component thereof", U. S. Patent 6, 391, 1945 (2001).
  15. M. C. Li, X. Ge, U. R. Cho, "Emulsion grafting vinyl monomers onto starch for reinforcement of styrene-butadiene rubber", Macromol. Res., 21, 519 (2013). https://doi.org/10.1007/s13233-013-1052-3
  16. M. C. Li, X. Ge, U. R. Cho, "Mechanical performance, water absorption behavior and biodegradability of poly (methyl methacrylate)-modified starch/SBR composites", Macromol. Res., 21, 793 (2013). https://doi.org/10.1007/s13233-013-1088-4
  17. K. Wilpiszewska, T. Spychaj, "Chemical modification of starch with hexamethylene diisocyanate derivatives", Carbohyd. Polym., 70, 334 (2007). https://doi.org/10.1016/j.carbpol.2007.04.023
  18. M. C. Li, U. R. Cho, "Effectiveness of coupling agents in the poly (methyl methacrylate)-modified starch/styrene-butadiene rubber interfaces", Matter. Lett., 92, 132 (2013). https://doi.org/10.1016/j.matlet.2012.10.050
  19. H. Wang, X. Sun, P. Seib, "Strengthening blends of poly(lactic acid) and starch with methylenediphenyl diisocyanate", J. Appl. Polym. Sci., 82, 1761 (2001). https://doi.org/10.1002/app.2018
  20. M. Kotal, S. K. "Srivastava, Synergistic effect of organomodification and isocyanate grafting of layered double hydroxide in reinforcing properties of polyurethane nanocomposites", J. Mater. Chem., 21, 18540 (2011). https://doi.org/10.1039/c1jm13780h
  21. I. Zaman, T. T. Phan, H. C. Kuan, Q. Meng, L. T. B. La, L. Luong, O. Youssf, J. Ma, Polymer, 52, 1603 (2011). https://doi.org/10.1016/j.polymer.2011.02.003
  22. K. C. M. Nair, S. Thomas, "Effect of interface modification on the mechanical properties of polystyrene-sisal fiber composites", Polym. Compos., 24, 332 (2003). https://doi.org/10.1002/pc.10033
  23. T. Ohkita, S. H. Lee, "Effect of aliphatic isocyanates (HDI and LDI) as coupling agents on the properties of eco-composites from biodegradable polymers and corn starch", J. Adhes. Sci. Technol., 18, 905 (2004). https://doi.org/10.1163/156856104840516
  24. T. Ohkita, S. H. Lee, "Thermal degradation and biodegradability of poly (lactic acid)/corn starch composites", J. Appl. Polym. Sci., 100, 3009 (2006). https://doi.org/10.1002/app.23425
  25. S. H. Lee. S. Wang, "Biodegradable polymers/bamboo fiber composites with bio-based coupling agent", Compos. Part A, 37, 80 (2006). https://doi.org/10.1016/j.compositesa.2005.04.015
  26. D. Maldas, B. V. Kokta, C. Daneaulf," Influence of coupling agents and treatments on the mechanical properties of cellulose fiber-polystyrene composites", J. Appl. Polym. Sci., 37, 751 (1989). https://doi.org/10.1002/app.1989.070370313
  27. P. J. Flory, J. Rehner, "Statistical Mechanics of Cross-Linked Polymer Networks II. Swelling", J. Chem. Phys., 11, 512 (1943). https://doi.org/10.1063/1.1723791
  28. A. K. Bledzki, J. Gassan, "Composites reinforced with cellulose based fibres", Prog. Polym. Sci., 24, 221 (1999). https://doi.org/10.1016/S0079-6700(98)00018-5
  29. A. P. Mathew, S. Packirisamy, S. Thomas, "Studies on the thermal stability of natural rubber/polystyrene interpenetrating polymer networks: thermogravimetric analysis", Polym. Degrad. Stab., 72, 423 (2001). https://doi.org/10.1016/S0141-3910(01)00042-8
  30. S. J. Park, K. S. Cho, "Filler-elastomer interactions: influence of silane coupling agent on crosslink density and thermal stability of silica/rubber composites", J. Colloid Interf. Sci., 267, 86 (2003). https://doi.org/10.1016/S0021-9797(03)00132-2
  31. J. L. Willett, "Mechanical properties of LDPE/granular starch composites", J. Appl. Polym. Sci., 54, 1685 (1994). https://doi.org/10.1002/app.1994.070541112
  32. W. B. Wennekes, J. W. M. Noordermeer, R. N. Datta, "Mechanistic investigations into the adhesion between RFL-treated cords and rubber. part I: the Influence of rubber curatives", Rubber Chem. Technol., 80, 545 (2007). https://doi.org/10.5254/1.3548180
  33. Z. Wang, J. Liu, S. Wu, W. Wang, L. Zhang, "Novel percolation phenomena and mechanism of strengthening elastomers by nanofillers", Phys. Chem. Chem. Phys., 12, 3014 (2010). https://doi.org/10.1039/b919789c
  34. L. D. Perez, M. A. Zuluaga, T. Kyu, J. E. Mark, B. L. Lopez, "Preparation, characterization, and physical properties of multiwall carbon nanotube/elastomer composites", Polym. Eng. Sci., 49, 866 (2009). https://doi.org/10.1002/pen.21247
  35. L. Bokobza, "Multiwall carbon nanotube-filled natural rubber: electrical and mechanical properties", Express Polym. Lett., 6, 213 (2012). https://doi.org/10.3144/expresspolymlett.2012.24
  36. C. A. Rezende, F. C. Braganca, T. R. Doia, L.-T. Lee, F. Galembeck, F. Boue, "Natural rubber-clay nanocomposites: mechanical and structural properties", Polymer, 51, 3644 (2010). https://doi.org/10.1016/j.polymer.2010.06.026
  37. S. Praveen, P. K. Chattopadhyay, P. Albert, V. G. Dalvi, B. C. Chakraborty, S. Chattopadhyay, "Synergistic effect of carbon black and nanoclay fillers in styrene butadiene rubber matrix: development of dual structure, Compos. Part A, 40, 309 (2009). https://doi.org/10.1016/j.compositesa.2008.12.008
  38. E. Guth, O. Gold, "On the hydrodynamical theory of the viscosity of suspensions". Phys. Rev., 53, 322 (1938).
  39. E. Guth, "Theory of filler reinforcement", J. Appl. Phys., 16, 20 (1945). https://doi.org/10.1063/1.1707495
  40. J. C. Halpin, "Stiffness and expansion estimates for oriented short-fiber composites", J. Compos. Mater., 3, 732 (1969).

피인용 문헌

  1. -terephthalate)/starch composites with polymeric methylenediphenyl diisocyanate vol.132, pp.16, 2015, https://doi.org/10.1002/app.41884