DOI QR코드

DOI QR Code

KNOTTED AND LINKED PRODUCTS OF RECOMBINATION ON T (2, n)#T (2, m) SUBSTRATES

  • Flapan, Erica (Department of Mathematics Pomona College) ;
  • Grevet, Jeremy (Department of Mathematics Carleton College) ;
  • Li, Qi (Civil and Environmental Engineering Princeton University) ;
  • Sun, Chen Daisy (Department of Mathematics Carleton College) ;
  • Wong, Helen (Department of Mathematics Carleton College)
  • Received : 2013.11.21
  • Published : 2014.07.01

Abstract

We develop a topological model of site-specific recombination that applies to substrates which are the connected sum of two torus links of the form T(2, n)#T(2, m). Then we use our model to prove that all knots and links that can be produced by site-specific recombination on such substrates are contained in one of two families, which we illustrate.

Keywords

References

  1. F. Bonahon and L. Siebenmann, New geometric splittings of classical knots, and the classification and symmetries of arborescent knots, To appear as a Geometry & Topology Monograph, 2010.
  2. D. Buck and E. Flapan, Predicting knot or catenane type of site-specific recombination products, J. Mol. Biol. 374 (2007), no. 5, 1186-1199. https://doi.org/10.1016/j.jmb.2007.10.016
  3. D. Buck and E. Flapan, A topological characterization of knots and links arising from site-specific recombination, J. Phys. A 40 (2007), no. 41, 12377-12395. https://doi.org/10.1088/1751-8113/40/41/008
  4. D. Buck and M. Mauricio, Connect sum of lens spaces surgeries: application to Hin recombination, Math. Proc. Cambridge Philos. Soc. 150 (2011), no. 3, 505-525. https://doi.org/10.1017/S0305004111000090
  5. D. Buck and K. Valencia, Characterization of knots and links arising from site-specific recombination of twist knots, J. Phys. A 44 (2011), no. 4, 045002, 36 pp.
  6. D. Buck and K. Valencia, Predicting knot and catenane type of products of site-specific recombination on twist knot substrates, J. Mol. Biol. 411 (2011), no. 2, 350-367. https://doi.org/10.1016/j.jmb.2011.05.048
  7. D. Buck and C. V. Marcotte, Tangle solutions for a family of DNA-rearranging proteins, Math. Proc. Cambridge Philos. Soc. 139 (2005), no. 1, 59-80. https://doi.org/10.1017/S0305004105008431
  8. H. Cabrera-Ibarra and D. A. Lizarraga-Navarro, Braid solutions to the action of the Gin enzyme, J. Knot Theory Ramifications 19 (2010), no. 8, 1051-1074. https://doi.org/10.1142/S0218216510008327
  9. N. Crisona, R. Weinberg, B. Peter, D. W. Sumners, and N. Cozzarelli, The topological mechanism of phage lambda integrase, J. Mol. Biol. 289 (1999), no. 4, 747-775. https://doi.org/10.1006/jmbi.1999.2771
  10. I. K. Darcy, K. Ishihara, R. K. Medikonduri, and K. Shimokawa, Rational tangle surgery and Xer recombination on catenanes, Algebr. Geom. Topol. 12 (2012), no. 2, 1183-1210. https://doi.org/10.2140/agt.2012.12.1183
  11. I. K. Darcy, J. Luecke, and M. Vazquez, Tangle analysis of difference topology experiments: applications to a Mu protein-DNA complex, Algebr. Geom. Topol. 9 (2009), no. 4, 2247-2309. https://doi.org/10.2140/agt.2009.9.2247
  12. C. Ernst and D. W. Sumners, A calculus for rational tangles: applications to DNA recombination, Math. Proc. Cambridge Philos. Soc. 108 (1990), no. 3, 489-515. https://doi.org/10.1017/S0305004100069383
  13. C. Ernst and D. W. Sumners, Solving tangle equations arising in a DNA recombination model, Math. Proc. Cambridge Philos. Soc. 126 (1999), no. 1, 23-36. https://doi.org/10.1017/S0305004198002989
  14. L. H. Kauffman and S. Lambropoulou, Tangles, rational knots and DNA, In Lectures on topological fluid mechanics, volume 1973 of Lecture Notes in Math., pages 99-138, Springer, Berlin, 2009.
  15. S. Kim, A generalized 4-string solution tangle of DNA-protein complexes, J. Korean Soc. Ind. Appl. Math. 15 (2011), no. 3, 161-175.
  16. J. M. Montesinos, Seifert manifolds that are ramified two-sheeted cyclic coverings, Bol. Soc. Mat. Mexicana (2) 18 (1973), 1-32.
  17. D. W. Sumners, DNA, knots and tangles, The mathematics of knots, 327-353, Contrib. Math. Comput. Sci., 1, Springer, Heidelberg, 2011.
  18. M. Vazquez and D. W. Sumners, Tangle analysis of Gin site-specific recombination, Math. Proc. Cambridge Philos. Soc. 136 (2004), no. 3, 565-582. https://doi.org/10.1017/S0305004103007266
  19. F. Waldhausen, Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I, II, Invent. Math. 3 (1967), 308-333 https://doi.org/10.1007/BF01402956
  20. F. Waldhausen, Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I, II, Invent. Math. 4 (1967), 87-117. https://doi.org/10.1007/BF01425244
  21. F. Waldhausen, Uber Involutionen der 3-Sphare, Topology 8 (1969), 81-91. https://doi.org/10.1016/0040-9383(69)90033-0

Cited by

  1. A topological characterization of the products arising from site-specific recombination on $$T(2,n) \# C(2,r)$$T(2,n)#C(2,r) DNA substrates vol.56, pp.6, 2018, https://doi.org/10.1007/s10910-018-0883-8