References
- A. M. Acu, A. Babos, and F. Sofonea, The mean value theorems and inequalities of Ostrowski type, Sci. Stud. Res. Ser. Math. Inform. 21 (2011), no. 1, 5-16.
- A. M. Acu and F. Sofonea, On an inequality of Ostrowski type, J. Sci. Arts 2011 (2011), no. 3(16), 281-287.
- F. Ahmad, N. S. Barnett, and S. S. Dragomir, New weighted Ostrowski and Cebysev type inequalities, Nonlinear Anal. 71 (2009), no. 12, e1408-e1412. https://doi.org/10.1016/j.na.2009.01.178
- M. W. Alomari, A companion of Ostrowski's inequality with applications, Transylv. J. Math. Mech. 3 (2011), no. 1, 9-14.
- M. W. Alomari, M. Darus, S. S. Dragomir, and P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett. 23 (2010), no. 9, 1071-1076. https://doi.org/10.1016/j.aml.2010.04.038
- G. A. Anastassiou, Ostrowski type inequalities, Proc. Amer. Math. Soc. 123 (1995), no. 12, 3775-3781. https://doi.org/10.1090/S0002-9939-1995-1283537-3
- G. A. Anastassiou, Univariate Ostrowski inequalities, revisited. Monatsh. Math. 135 (2002), no. 3, 175-189. https://doi.org/10.1007/s006050200015
- G. A. Anastassiou, Ostrowski inequalities for cosine and sine operator functions, Mat. Vesnik 64 (2012), no. 4, 336-346.
- G. A. Anastassiou, Multivariate right fractional Ostrowski inequalities, J. Appl. Math. Inform. 30 (2012), no. 3-4, 445-454. https://doi.org/10.14317/JAMI.2012.30.3_4.445
- G. A. Anastassiou, Univariate right fractional Ostrowski inequalities, Cubo 14 (2012), no. 1, 1-7.
- N. S. Barnett, W.-S. Cheung, S. S. Dragomir, and A. Sofo, Ostrowski and trapezoid type inequalities for the Stieltjes integral with Lipschitzian integrands or integrators, Comput. Math. Appl. 57 (2009), no. 2, 195-201. https://doi.org/10.1016/j.camwa.2007.07.021
- N. S. Barnett and S. S. Dragomir, A perturbed trapezoid inequality in terms of the fourth derivative, Korean J. Comput. Appl. Math. 9 (2002), no. 1, 45-60.
- N. S. Barnett and S. S. Dragomir, Perturbed version of a general trapezoid inequality, Inequality theory and applications, Vol. 3, 1-12, Nova Sci. Publ., Hauppauge, NY, 2003.
- N. S. Barnett and S. S. Dragomir, A perturbed trapezoid inequality in terms of the third derivative and applications, Inequality theory and applications, Vol. 5, 1-11, Nova Sci. Publ., New York, 2007.
- N. S. Barnett, S. S. Dragomir, and I. Gomm, A companion for the Ostrowski and the generalised trapezoid inequalities, Math. Comput. Modelling 50 (2009), no. 1-2, 179-187. https://doi.org/10.1016/j.mcm.2009.04.005
- P. Cerone, W.-S. Cheung, and S. S. Dragomir, On Ostrowski type inequalities for Stieltjes integrals with absolutely continuous integrands and integrators of bounded variation, Comput. Math. Appl. 54 (2007), no. 2, 183-191. https://doi.org/10.1016/j.camwa.2006.12.023
- P. Cerone and S. S. Dragomir, Midpoint-type rules from an inequalities point of view, Handbook of analytic-computational methods in applied mathematics, 135-200, Chapman & Hall/CRC, Boca Raton, FL, 2000.
- P. Cerone and S. S. Dragomir, Trapezoidal-type rules from an inequalities point of view, Handbook of analytic-computational methods in applied mathematics, 65-134, Chapman & Hall/CRC, Boca Raton, FL, 2000.
- P. Cerone, S. S. Dragomir, and C. E. M. Pearce, A generalized trapezoid inequality for functions of bounded variation, Turkish J. Math. 24 (2000), no. 2, 147-163.
- X.-L. Cheung and J. Sun, A note on the perturbed trapezoid inequality, J. Inequal. Pure Appl. Math. 3 (2002), no. 2, Article 29, 7 pp. (electronic).
- S. S. Dragomir, The Ostrowski integral inequality for mappings of bounded variation, Bull. Austral. Math. Soc. 60 (1999), no. 3, 495-508. https://doi.org/10.1017/S0004972700036662
- S. S. Dragomir, On the midpoint quadrature formula for mappings with bounded variation and applications, Kragujevac J. Math. 22 (2000), 13-19.
- S. S. Dragomir, On the Ostrowski's integral inequality for mappings with bounded variation and applications, Math. Inequal. Appl. 4 (2001), no. 1, 59-66.
- S. S. Dragomir, On the trapezoid quadrature formula and applications, Kragujevac J. Math. 23 (2001), 25-36.
- S. S. Dragomir, Some inequalities of midpoint and trapezoid type for the Riemann-Stieltjes integral, Proceedings of the Third World Congress of Nonlinear Analysts, Part 4 (Catania, 2000); Nonlinear Anal. 47 (2001), no. 4, 2333-2340.
- S. S. Dragomir, Improvements of Ostrowski and generalised trapezoid inequality in terms of the upper and lower bounds of the first derivative, Tamkang J. Math. 34 (2003), no. 3, 213-222.
- S. S. Dragomir, Refinements of the generalised trapezoid and Ostrowski inequalities for functions of bounded variation, Arch. Math. (Basel) 91 (2008), no. 5, 450-460. https://doi.org/10.1007/s00013-008-2879-2
- S. S. Dragomir, Some inequalities for continuous functions of selfadjoint operators in Hilbert spaces, Acta Math. Vietnamica, to appear; Preprint, RGMIA Res. Rep. Coll. 15 (2012), Art. 16. http://rgmia.org/v15.php.
- S. S. Dragomir, Y. J. Cho, and Y.-H. Kim, On the trapezoid inequality for the Riemann-Stieltjes integral with Holder continuous integrands and bounded variation integrators, Inequality theory and applications, Vol. 5, 71-79, Nova Sci. Publ., New York, 2007.
- S. S. Dragomir and A. Mcandrew, On trapezoid inequality via a Gruss type result and applications, Tamkang J. Math. 31 (2000), no. 3, 193-201.
- S. S. Dragomir, J. Pecaric, and S. Wang, The unified treatment of trapezoid, Simpson, and Ostrowski type inequality for monotonic mappings and applications, Math. Comput. Modelling 31 (2000), no. 6-7, 61-70.
- H. Gunawan, A note on Dragomir-McAndrew's trapezoid inequalities, Tamkang J.Math. 33 (2002), no. 3, 241-244.
- G. Helmberg, Introduction to Spectral Theory in Hilbert Space, John Wiley & Sons, Inc.-New York, 1969.
- A. I. Kechriniotis and N. D. Assimakis, Generalizations of the trapezoid inequalities based on a new mean value theorem for the remainder in Taylor's formula, J. Inequal. Pure Appl. Math. 7 (2006), no. 3, Article 90, 13 pp. (electronic).
- Z. Liu, Some inequalities of perturbed trapezoid type, J. Inequal. Pure Appl. Math. 7 (2006), no. 2, Article 47, 9 pp.
- Z. Liu, Some Ostrowski type inequalities and applications, Vietnam J. Math. 37 (2009), no. 1, 15-22.
- Z. Liu, Some companions of an Ostrowski type inequality and applications, J. Inequal. Pure Appl. Math. 10 (2009), no. 2, Article 52, 12 pp.
- Z. Liu, New sharp bound for a general Ostrowski type inequality, Tamsui Oxf. J. Math. Sci. 26 (2010), no. 1, 53-59.
- Z. Liu, A sharp general Ostrowski type inequality, Bull. Aust. Math. Soc. 83 (2011), no. 2, 189-209.
- Z. Liu, A note on Ostrowski type inequalities related to some s-convex functions in the second sense, Bull. Korean Math. Soc. 49 (2012), no. 4, 775-785. https://doi.org/10.4134/BKMS.2012.49.4.775
- W.-J. Liu, Q.-L. Xue, and J.-W. Dong, New generalization of perturbed trapezoid, midpoint inequalities and applications, Int. J. Pure Appl. Math. 41 (2007), no. 6, 761-768.
- M. Masjed-Jamei and S. S. Dragomir, A new generalization of the Ostrowski inequality and applications, Filomat 25 (2011), no. 1, 115-123. https://doi.org/10.2298/FIL1101115M
- P. R. Mercer, Hadamard's inequality and trapezoid rules for the Riemann-Stieltjes integral, J. Math. Anal. Appl. 344 (2008), no. 2, 921-926. https://doi.org/10.1016/j.jmaa.2008.03.026
- A. Mcd. Mercer, On perturbed trapezoid inequalities, J. Inequal. Pure Appl. Math. 7 (2006), no. 4, Article 118, 7 pp. (electronic).
- B. G. Pachpatte, A note on a trapezoid type integral inequality, Bull. Greek Math. Soc. 49 (2004), 85-90.
- B. G. Pachpatte, New inequalities of Ostrowski and trapezoid type for n-time differentiable functions, Bull. Korean Math. Soc. 41 (2004), no. 4, 633-639. https://doi.org/10.4134/BKMS.2004.41.4.633
-
J. Park, On the Ostrowskilike type integral inequalities for mappings whose second derivatives are
$s^*$ -convex, Far East J. Math. Sci. (FJMS) 67 (2012), no. 1, 21-35. -
J. Park, Some Ostrowskilike type inequalities for differentiable real (
${\alpha}$ ,m)-convex mappings, Far East J. Math. Sci. (FJMS) 61 (2012), no. 1, 75-91 - M. Z. Sarikaya, On the Ostrowski type integral inequality, Acta Math. Univ. Comenian. (N.S.) 79 (2010), no. 1, 129-134.
- W. T. Sulaiman, Some new Ostrowski type inequalities, J. Appl. Funct. Anal. 7 (2012), no. 1-2, 102-107.
- K.-L. Tseng, Improvements of the Ostrowski integral inequality for mappings of bounded variation II, Appl. Math. Comput. 218 (2012), no. 10, 5841-5847. https://doi.org/10.1016/j.amc.2011.11.047
- K.-L. Tseng, S.-R. Hwang, G.-S. Yang, and Y.-M. Chou, Improvements of the Ostrowski integral inequality for mappings of bounded variation I, Appl. Math. Comput. 217 (2010), no. 6, 2348-2355. https://doi.org/10.1016/j.amc.2010.07.034
- N. Ujevic, Perturbed trapezoid and mid-point inequalities and applications, Soochow J. Math. 29 (2003), no. 3, 249-257.
- N. Ujevic, On perturbed mid-point and trapezoid inequalities and applications, Kyungpook Math. J. 43 (2003), no. 3, 327-334.
- N. Ujevic, Error inequalities for a generalized trapezoid rule, Appl. Math. Lett. 19 (2006), no. 1, 32-37. https://doi.org/10.1016/j.aml.2005.03.005
- S. W. Vong, A note on some Ostrowski-like type inequalities, Comput. Math. Appl. 62 (2011), no. 1, 532-535. https://doi.org/10.1016/j.camwa.2011.05.037
- Q. Wu and S. Yang, A note to Ujevic's generalization of Ostrowski's inequality, Appl. Math. Lett. 18 (2005), no. 6, 657-665. https://doi.org/10.1016/j.aml.2004.08.010
- Y. Wu and Y. Wang, On the optimal constants of Ostrowskilike inequalities involving n knots, Appl. Math. Comput. 219 (2013), no. 14, 7789-7794. https://doi.org/10.1016/j.amc.2013.02.004
- Y.-X. Xiao, Remarks on Ostrowskilike inequalities, Appl. Math. Comput. 219 (2012), no. 3, 1158-1162. https://doi.org/10.1016/j.amc.2012.07.025