참고문헌
- D. D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847-2852. https://doi.org/10.1080/00927879908826596
- F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1992.
-
G. Azumaya, Strongly
${\pi}$ -regular rings, J. Fac. Sci. Hokkaido Univ. Ser. I. 13 (1954), 34-39. - H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. https://doi.org/10.1017/S0004972700042052
- H. E. Bell, A commutativity study for periodic rings, Pacific J. Math. 70 (1977), no. 1, 29-36. https://doi.org/10.2140/pjm.1977.70.29
- P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648. https://doi.org/10.1112/S0024609399006116
-
F. Dischinger, Sur les anneaux fortement
${\pi}$ -reguliers, C. R. Acad. Sci. Paris Ser. A-B 283 (1976), no. 8, 571-573. - K. E. Eldridge, Orders for finite noncommutative rings with unity, Amer. Math. Monthly 75 (1968), no. 5, 512-514. https://doi.org/10.2307/2314716
- D. B. Erickson, Orders for finite noncommutative rings, Amer. Math. Monthly 73 (1966), 376-377. https://doi.org/10.2307/2315402
- E. H. Feller, Properties of primary noncommutative rings, Trans. Amer. Math. Soc. 89 (1958), 79-91. https://doi.org/10.1090/S0002-9947-1958-0098763-0
- C. Huh, H. K. Kim, N. K. Kim, and Y. Lee, Basic examples and extensions of symmetric rings, J. Pure Appl. Algebra 202 (2005), no. 1-3, 154-167. https://doi.org/10.1016/j.jpaa.2005.01.009
- C. Huh, H. K. Kim, and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167 (2002), no. 1, 37-52. https://doi.org/10.1016/S0022-4049(01)00149-9
- N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488. https://doi.org/10.1006/jabr.1999.8017
- N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207-223. https://doi.org/10.1016/S0022-4049(03)00109-9
- R. L. Kruse and D. T. Price, Nilpotent Rings, Gordon and Breach, New York, London, Paris, 1969.
- J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, 1966.
- J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368. https://doi.org/10.4153/CMB-1971-065-1
- G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), no. 3, 311-318. https://doi.org/10.1016/S0022-4049(02)00070-1
- L. Motais de Narbonne, Anneaux semi-commutatifs et uniseriels anneaux dont les ideaux principaux sont idempotents, In: Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), 71-73, Bib. Nat., Paris 1982.
- G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60. https://doi.org/10.1090/S0002-9947-1973-0338058-9
- W. Xue, Structure of minimal noncommutative duo rings and minimal strongly bounded nonduo rings, Comm. Algebra 20 (1992), no. 9, 2777-2788. https://doi.org/10.1080/00927879208824488
- L. Xu and W. Xue, Structure of minimal non-commutative zero-insertive rings, Math. J. Okayama Univ. 40 (1998), 69-76.
피인용 문헌
- Ring properties related to symmetric rings vol.24, pp.07, 2014, https://doi.org/10.1142/S0218196714500428
- On a property of polynomial rings over reversible rings pp.1532-4125, 2018, https://doi.org/10.1080/00927872.2018.1498865
- Matrix Rings over Reflexive Rings vol.25, pp.03, 2018, https://doi.org/10.1142/S1005386718000317
- Structure of insertion property by powers vol.28, pp.03, 2018, https://doi.org/10.1142/S0218196718500236