DOI QR코드

DOI QR Code

STRUCTURE OF IDEMPOTENTS IN RINGS WITHOUT IDENTITY

  • Kim, Nam Kyun (Faculty of Liberal Arts and Sciences Hanbat National University) ;
  • Lee, Yang (Department of Mathematics Education Pusan National University) ;
  • Seo, Yeonsook (Department of Mathematics Pusan National University)
  • 투고 : 2013.11.02
  • 발행 : 2014.07.01

초록

We study the structure of idempotents in polynomial rings, power series rings, concentrating in the case of rings without identity. In the procedure we introduce right Insertion-of-Idempotents-Property (simply, right IIP) and right Idempotent-Reversible (simply, right IR) as generalizations of Abelian rings. It is proved that these two ring properties pass to power series rings and polynomial rings. It is also shown that ${\pi}$-regular rings are strongly ${\pi}$-regular when they are right IIP or right IR. Next the noncommutative right IR rings, right IIP rings, and Abelian rings of minimal order are completely determined up to isomorphism. These results lead to methods to construct such kinds of noncommutative rings appropriate for the situations occurred naturally in studying standard ring theoretic properties.

키워드

참고문헌

  1. D. D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847-2852. https://doi.org/10.1080/00927879908826596
  2. F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1992.
  3. G. Azumaya, Strongly ${\pi}$-regular rings, J. Fac. Sci. Hokkaido Univ. Ser. I. 13 (1954), 34-39.
  4. H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. https://doi.org/10.1017/S0004972700042052
  5. H. E. Bell, A commutativity study for periodic rings, Pacific J. Math. 70 (1977), no. 1, 29-36. https://doi.org/10.2140/pjm.1977.70.29
  6. P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648. https://doi.org/10.1112/S0024609399006116
  7. F. Dischinger, Sur les anneaux fortement ${\pi}$-reguliers, C. R. Acad. Sci. Paris Ser. A-B 283 (1976), no. 8, 571-573.
  8. K. E. Eldridge, Orders for finite noncommutative rings with unity, Amer. Math. Monthly 75 (1968), no. 5, 512-514. https://doi.org/10.2307/2314716
  9. D. B. Erickson, Orders for finite noncommutative rings, Amer. Math. Monthly 73 (1966), 376-377. https://doi.org/10.2307/2315402
  10. E. H. Feller, Properties of primary noncommutative rings, Trans. Amer. Math. Soc. 89 (1958), 79-91. https://doi.org/10.1090/S0002-9947-1958-0098763-0
  11. C. Huh, H. K. Kim, N. K. Kim, and Y. Lee, Basic examples and extensions of symmetric rings, J. Pure Appl. Algebra 202 (2005), no. 1-3, 154-167. https://doi.org/10.1016/j.jpaa.2005.01.009
  12. C. Huh, H. K. Kim, and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167 (2002), no. 1, 37-52. https://doi.org/10.1016/S0022-4049(01)00149-9
  13. N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488. https://doi.org/10.1006/jabr.1999.8017
  14. N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207-223. https://doi.org/10.1016/S0022-4049(03)00109-9
  15. R. L. Kruse and D. T. Price, Nilpotent Rings, Gordon and Breach, New York, London, Paris, 1969.
  16. J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, 1966.
  17. J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368. https://doi.org/10.4153/CMB-1971-065-1
  18. G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), no. 3, 311-318. https://doi.org/10.1016/S0022-4049(02)00070-1
  19. L. Motais de Narbonne, Anneaux semi-commutatifs et uniseriels anneaux dont les ideaux principaux sont idempotents, In: Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), 71-73, Bib. Nat., Paris 1982.
  20. G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60. https://doi.org/10.1090/S0002-9947-1973-0338058-9
  21. W. Xue, Structure of minimal noncommutative duo rings and minimal strongly bounded nonduo rings, Comm. Algebra 20 (1992), no. 9, 2777-2788. https://doi.org/10.1080/00927879208824488
  22. L. Xu and W. Xue, Structure of minimal non-commutative zero-insertive rings, Math. J. Okayama Univ. 40 (1998), 69-76.

피인용 문헌

  1. Ring properties related to symmetric rings vol.24, pp.07, 2014, https://doi.org/10.1142/S0218196714500428
  2. On a property of polynomial rings over reversible rings pp.1532-4125, 2018, https://doi.org/10.1080/00927872.2018.1498865
  3. Matrix Rings over Reflexive Rings vol.25, pp.03, 2018, https://doi.org/10.1142/S1005386718000317
  4. Structure of insertion property by powers vol.28, pp.03, 2018, https://doi.org/10.1142/S0218196718500236