References
- Pratt, J. E., Krupp, B. T., Morse, C. J., and Collins, S. H., "The RoboKnee: An Exoskeleton for Enhancing Strength and Endurance during Walking," Proc. of the IEEE International Conference on Robotics and Automation, Vol. 3, pp. 2430-2435, 2004.
- Kazerooni, H., Racine, J.-L., Huang, L., and Steger, R., "On the Control of the Berkeley Lower Extremity Exoskeleton (BLEEX)," Proc. of the IEEE International Conference on Robotics and Automation, pp. 4353-4360, 2005.
- Chu, A., Kazerooni, H., and Zoss, A., "On the Biomimetic Design of the Berkeley Lower Extremity Exoskeleton (BLEEX)," IEEE/ASME Transaction on Mechatronics, Vol. 11, No. 2, pp. 128-138, 2006. https://doi.org/10.1109/TMECH.2006.871087
- Gupta, A. and O'Malley, M. K., "Design of a Haptic Arm Exoskeleton for Training and Rehabilitation," IEEE/ASME Transactions on Mechatronics, Vol. 11, No. 3, pp. 280-289, 2006. https://doi.org/10.1109/TMECH.2006.875558
- Perry, J. C., Rosen, J., and Burns, S., "Upper-limb Powered Exoskeleton Design," IEEE/ASME Transactions on Mechatronics, Vol. 12, No. 4, pp. 408-417, 2007. https://doi.org/10.1109/TMECH.2007.901934
- Mulas, M., Folgheraiter, M., and Gini, G., "An EMG Controlled Exoskeleton for Hand rehabilitation," Proc. of the 9th International Conference on Rehabilitation Robotics, pp. 371-374, 2005.
- Takahashi, C. D., Der-Yeghiaian, L., Le, V., Motiwala, R. R., and Cramer, S. C., "Robot-based Hand Motor Therapy after Stroke," Brain, Vol. 131, No. 2, pp. 425-437, 2008. https://doi.org/10.1093/brain/awm311
- Wu, J., Huang, J., Wang, Y., and Xing, K., "A Wearable Rehabilitation Robotic Hand Driven by PM-TS Actuators," Intelligent Robotics and Applications, Vol. 6425, pp. 440-450, 2010.
- Iqbal, J., Tsagarakis, N. G., Fiorilla, A. E., and Caldwell, D. G., "A Portable Rehabilitation Device for the Hand," Proc. of the IEEE Annual International Conference on Engineering in Medicine and Biology Society, pp. 3694-3697, 2010.
- Tong, K. Y., Ho, S. K., Pang, P. M. K., Hu, X. L., Tam, W. K., et al., "An Intention Driven Hand Functions Task Training Robotic System," Proc. of the IEEE Annual International Conference on Engineering in Medicine and Biology Society, pp. 3406-3409, 2010.
- Noritsugu, T., Takaiwa, M., and Sasaki, D., "Development of Power Assist Wear using Pneumatic Rubber Artificial Muscles," Journal of Robotics and Mechatronics, Vol. 21, No. 5, pp. 607-613, 2009. https://doi.org/10.20965/jrm.2009.p0607
- Takashima, K., Noritsugu, T., Rossiter, J., Guo, S., and Mukai, T., "Development of Curved Type Pneumatic Artificial Rubber Muscle using Shape memory Polymer," Proc. of the SICE Annual Conference, pp. 1691-1695, 2011.
- Bar-Cohen, Y., "Electro-active Polymers: Current Capabilities and Challenges," Proc. of the SPIE on International Society for Optical Engineering, Vol. 4695, pp. 1-7, 2002.
- Bar-Cohen, Y., "EAP as Artificial Muscles: Progress and Challenges," Proc. of the SPIE on Smart Structures and Materials: Electroactive Polymer Actuators and Devices (EAPAD), Vol.5385, pp. 10-16, 2004.
- Mirfakhrai, T., Madden, J. D. W., and Baughman, R. H., "Polymer Artificial Muscles," Materials Today, Vol. 10, No. 4, pp. 30-38, 2007.
- Deole, U., Lumia, R., Shahinpoor, M., and Bermudez, M., "Design and Test of IPMC Artificial Muscle Microgripper," Journal of Micro-Nano Mechatronics, Vol. 4, No. 3, pp. 95-102, 2008. https://doi.org/10.1007/s12213-008-0004-z
- Lee, J. H., Oh, J. S., Jeong, G. H., Lee, J. Y., Yoon, B. R., et al., "New Computational Model for Predicting the Mechanical Behavior of Ionic Polymer Metal Composite (IPMC) Actuators," Int. J. Precis. Eng. Manuf., Vol. 12, No. 4, pp. 737-740, 2011. https://doi.org/10.1007/s12541-011-0096-6
- Kim, Y. J., Jeong, G. H., Rhee, K. H., and Lee, S. J., "Dynamic Analysis of Finger Joint Torque for Tip Pinch Task," J. Korean Soc. Precis. Eng., Vol. 28, No. 6, pp. 657-662, 2011.