DOI QR코드

DOI QR Code

사다리꼴형 함수의 입력 공간분할에 의한 가스로공정의 특성분석

Characteristics of Gas Furnace Process by Means of Partition of Input Spaces in Trapezoid-type Function

  • 이동윤 (중부대학교 전기전자공학과)
  • Lee, Dong-Yoon (Dept. of Electrical Electronic Engineering, Joongbu University)
  • 투고 : 2014.01.28
  • 심사 : 2014.04.20
  • 발행 : 2014.04.28

초록

퍼지모델링은 일반적으로 주어진 데이터를 이용하고 퍼지규칙은 입력변수를 선정하고 각 입력변수에 대한 입력공간을 분할함으로써 입력변수 및 공간분할에 의해 확립된다. 퍼지규칙의 전반부는 입력변수, 공간분할 수 및 소속 함수를 선정하고 본 논문에서 후반부는 선형추론 및 변형된 이차식에 의해 다항식함수의 형태로 나타낸다. 전반부 파라미터의 동정은 입출력 데이터의 최소값과 최대값을 이용하는 최소-최대 방법 및 입출력 데이터를 군집으로 형성하는 C-Means 클러스터링 알고리즘을 사용하여 입력공간을 분할한다. 각 규칙의 후반부 파라미터들, 즉 다항식의 계수들의 동정은 표준최소자승법에 의해 수행된다. 본 논문에서 전반부 소속 함수는 사다리꼴형 멤버쉽 함수를 사용하여 입력공간을 분할하고 비선형공정에서 널리 이용되는 가스로데이터를 사용하여 성능을 평가한다.

Fuzzy modeling is generally using the given data and the fuzzy rules are established by the input variables and the space division by selecting the input variable and dividing the input space for each input variables. The premise part of the fuzzy rule is presented by selection of the input variables, the number of space division and membership functions and in this paper the consequent part of the fuzzy rule is identified by polynomial functions in the form of linear inference and modified quadratic. Parameter identification in the premise part devides input space Min-Max method using the minimum and maximum values of input data set and C-Means clustering algorithm forming input data into the hard clusters. The identification of the consequence parameters, namely polynomial coefficients, of each rule are carried out by the standard least square method. In this paper, membership function of the premise part is dividing input space by using trapezoid-type membership function and by using gas furnace process which is widely used in nonlinear process we evaluate the performance.

키워드

참고문헌

  1. Jang. J.-S. R., Neuro-Fuzzy and Soft Computing, Prentice-Hall, 1997.
  2. K. J. Park, D. Y. Lee, "Characteristics of Fuzzy Inference Systems by Means of Partition of Input Spaces in Non linear Pro cess", The Korea Contents Association, Vol. 11, No. 3, pp. 48-55, 2011. https://doi.org/10.5392/JKCA.2011.11.3.048
  3. Gopalan, S., Nair, M. S, and Sebastian, S., "Approximation Studies on Image Enhanc ement Using Fuzzy Technique." Interna tional Journal of Advanced Science and Technology. Vol, 10, pp.11-26, 2009.
  4. C. W. Xu, "Fuzzy system identification", IEEE Proceeding Vol. 126, No. 4, pp.146-150, 1989.
  5. R.M. Tong, "Synthesis of fuzzy models for industrial processes", Int. J. Gen. Syst., Vol. 4, pp.143-162, 1978. https://doi.org/10.1080/03081077808960680
  6. W. Pedrycz, "An identification algorithm in fuzzy relational system", Fuzzy Sets Syst., Vol. 13, pp.153-167, 1984. https://doi.org/10.1016/0165-0114(84)90015-0
  7. K. J. Park, D. Y. Lee, "Nonlinear Characte ristics of Non-Fuzzy Inference Systems Based on HCM Clustering Algorithm", The Korea Academia-Industrial Cooperation Society, Vol. 13, No. 11, pp. 5379-5388, 2012. https://doi.org/10.5762/KAIS.2012.13.11.5379
  8. K. J. Park, D. Y. Lee, "Design of Fuzzy Neural Networks Based on Fuzzy Clustering and its Application", The Korea Academia-Industrial Cooperation Society, Vol. 14, No. 1, pp. 378-384, 2013. https://doi.org/10.5762/KAIS.2013.14.1.378
  9. K. J. Park, D. Y. Lee, "Genetic Optimization of Fuzzy Inference Systems by Means of Fuzzy C-Means Ciustering ", INFORMATION Journal, Vol. 16, No. 12(A), pp.8439-8444, 2013.
  10. Box and Jenkins, "Time Series Analysis, Forecasting and Control", Holden Day, Sanfrancisco, CA.