DOI QR코드

DOI QR Code

A Metaheuristic Algorithm based Redesign Methodology for Green Product Family Considering Environmental Performance

환경성을 고려한 메타 휴리스틱 알고리즘 기반의 그린 Product Family 재설계 방법론

  • Received : 2014.03.10
  • Accepted : 2014.05.20
  • Published : 2014.05.28

Abstract

The competitiveness in today's global market forces many companies to develop families of products to provide enough variety for the marketplace. The challenge when designing a product family is in resolving the tradeoff between product commonality and distinctiveness. Simultaneously it is necessary to consider environmental performance to design a product family as well as to shorten lead-times, improve quality and reduce costs. This paper proposes a metaheuristic algorithm based redesign methodology for green product family considering environmental performance. The proposed method uses a genetic algorithm as metaheuristic algorithm and green product family index (GPFI) to support green product family design. In addition, it provides the redesign methodology such as product family level and component level. A case study used table lamps as an product family's example shows the verification and effectiveness of the proposed method.

오늘날의 글로벌 시장에서의 경쟁은 많은 회사들이 시장에서 충분한 다양성을 가진 product family를 개발하도록 하고 있다. Product family를 설계할 때 중요한 이슈 중에 하나는 제품의 공통성과 차별성간의 절충점을 찾아내는 것이다, 이와 동시에 Product family를 설계할 때 리드타임을 단축시키고, 품질을 향상시키며 비용을 절감하는 것뿐만 아니라 제품의 환경 성능을 고려하는 것도 필요하다. 본 연구에서는 환경성을 고려한 메타 휴리스틱 알고리즘 기반의 그린 Product Family 재설계 방법론을 제안한다. 제안하는 방법은 그린 product family의 설계를 위해 메타휴리스틱 알고리즘으로써 유전자 알고리즘과 green product family index (GPFI)를 이용한다. 추가적으로 product family 레벨과 부품 레벨의 product family 재설계 추천방안도 제시하였다. 본 연구에서는 테이블 램프 product family를 대상으로 제안한 방법의 효율성과 타당성을 검증하였다.

Keywords

References

  1. D. Kumar, W. Chen, T. W. Simpson, A market-driven approach to product family design, International Journal of Production Research, Vol. 47, No. 1, pp. 71-104, 2009. https://doi.org/10.1080/00207540701393171
  2. J. Jiao, T. W. Simpson, Z. Siddique, Product family design and platform-based product development, Journal of Intelligent Manufacturing, Vol. 18, No. 1, pp. 5-29, 2007. https://doi.org/10.1007/s10845-007-0003-2
  3. T. W. Simpson, S. Siddique, J. Jiao, Product Platform and Product Family Design: Methods and Applications, Springer, NY. 2005.
  4. K. -K. Seo, H. Jeon, Development of a New Green Product Family Index Considering Environmental Performance, The Journal of Digital Policy & Management, Vol. 11, No. 3, pp.175-180, 2013.
  5. T. El-Ghazali, Metaheuristics: From Design to Implementation, Wiley, 2009.
  6. D. E. Goldberg, Genetic Algorithm in Search, Optimization and Machine Learning, Addison-Wesley Publishing Company Inc., Reading, PA, 1989.
  7. J. J. Grefensette, Optimization of Control Parameters for Genetic Algorithms, IEEE Transactions on Systems, Man and Cybernetics, Vol. 16, No. 1, 122-128, 1986. https://doi.org/10.1109/TSMC.1986.289288