DOI QR코드

DOI QR Code

Nutritional Factors Affecting Abdominal Fat Deposition in Poultry: A Review

  • Fouad, A.M. (Department of Animal Production, Faculty of Agriculture, Cairo University) ;
  • El-Senousey, H.K. (Department of Animal Production, Faculty of Agriculture, Cairo University)
  • Received : 2013.11.05
  • Accepted : 2014.02.19
  • Published : 2014.07.01

Abstract

The major goals of the poultry industry are to increase the carcass yield and to reduce carcass fatness, mainly the abdominal fat pad. The increase in poultry meat consumption has guided the selection process toward fast-growing broilers with a reduced feed conversion ratio. Intensive selection has led to great improvements in economic traits such as body weight gain, feed efficiency, and breast yield to meet the demands of consumers, but modern commercial chickens exhibit excessive fat accumulation in the abdomen area. However, dietary composition and feeding strategies may offer practical and efficient solutions for reducing body fat deposition in modern poultry strains. Thus, the regulation of lipid metabolism to reduce the abdominal fat content based on dietary composition and feeding strategy, as well as elucidating their effects on the key enzymes associated with lipid metabolism, could facilitate the production of lean meat and help to understand the fat-lowering effects of diet and different feeding strategies.

Keywords

References

  1. Abdulkarimi, R., M. Daneshyar, and A. Aghazadeh. 2011. Thyme (Thymus vulgaris) extract consumption darkens liver, lowers blood cholesterol, proportional liver and abdominal fat weights in broiler chickens. Ital. J. Anim. Sci. 10:101-105.
  2. Adams, K. A. and A. J. Davis. 2001. Dietary protein concentration regulates the mRNA expression of chicken hepatic malic enzyme. J. Nutr. 131:2269-2274.
  3. Al-Daraji, H. J., A. A. Al-Mashadani, W. K. Al-Hayani, A. S. AlHassani, and H. A. Mirza. 2011. Influence of in ovo injection of L-arginine on productive and physiological performance of quails. Res. Opin. Anim. Vet. Sci. 7:463-467.
  4. Al-Kassie, G. A. M. 2009. Influence of two plant extracts derived from thyme and cinnamon on broiler performance. Pak. Vet. J. 29:169-173.
  5. Andi, M. A. 2012. Effects of additional DL-methionine in broiler starter diet on blood lipids and abdominal fat. Afr. J. Biotechnol. 11:7579-7581.
  6. Arslan, C., M. Citil, and M. Saatci. 2003. Effect of L-carnitine administration on growth performance, carcass traits, blood serum parameters and abdominal fatty acid composition of ducks. Arch. Anim. Nutr. 57:381-388. https://doi.org/10.1080/00039420310001607734
  7. Arslan, C., M. Citil, and M. Saatci. 2004. Effects of L-carnitine administration on growth performance, carcass traits, serum lipids and abdominal fatty acid compositions of geese. Rev. Med. Vet. 155:315-320.
  8. Attia, Y. A. 2003. Performance, carcass characteristics, meat quality and plasma constituents of meat type drakes fed diets containing different levels of lysine with or without a microbial phytase. Arch. Anim. Nutr. 57:39-48. https://doi.org/10.1080/0003942031000086635
  9. Back, D. W., M. J. Goldman, J. E. Fisch, R. S. Ochs, and A. G. Goodridge. 1986. The fatty acid synthase gene in avian liver. Two mRNAs are expressed and regulated in parallel by feeding, primarily at the level of transcription. J. Biol. Chem. 261:4190-4197.
  10. Badinga, L., K. T. Selberg, A. C. Dinges, C. W. Comer, and R. D. Miles. 2003. Dietary conjugated linoleic acid alters hepatic lipid content and fatty acid composition in broiler chickens. Poult. Sci. 82:111-116. https://doi.org/10.1093/ps/82.1.111
  11. Baeza, E. and E. Le Bihan-Duval. 2013. Chicken lines divergent for low or high abdominal fat deposition: A relevant model to study the regulation of energy metabolism. Animal 7:965-973. https://doi.org/10.1017/S1751731113000153
  12. Baiao, N. C. and L. J. C. Lara. 2005. Oil and fat in broiler nutrition. Brazilian J. Poult. Sci. 7:129-141.
  13. Bakutis, B. and Y. Bukis. 1984. Antioxidants in feeding of broiler ducks. J. Ptitsevodstvo10:21-22.
  14. Becker, W. A., J. V. Spencer, L. W. Mirosh, and J. A. Verstrate. 1979. Prediction of fat and fat free live weight in broiler chickens using back skin fat, abdominal fat and live body weight. Poult. Sci. 58:835-842. https://doi.org/10.3382/ps.0580835
  15. Berri, C., J. Besnard, and C. Relandeau. 2008. Increasing dietary lysine increases final pH and decreases drip loss of broiler breast meat. Poult. Sci. 87:480-484. https://doi.org/10.3382/ps.2007-00226
  16. Biswas, Md. A. H. and M. Wakita. 2001. Effect of dietary Japanese green tea powder supplementation on feed utilization and carcass profiles in broilers. J. Poult. Sci. 38:50-57. https://doi.org/10.2141/jpsa.38.50
  17. Butterwith, S. C. 1989. Contribution of lipoprotein lipase activity to the differential growth of three adipose tissue depots in young broiler chickens. Br. Poult. Sci. 30:927-933. https://doi.org/10.1080/00071668908417219
  18. Cao, F. L., X. H. Zhang, W. W. Yu, L. G. Zhao, and T. Wang. 2012. Effect of feeding fermented Ginkgo biloba leaves on growth performance, meat quality, and lipid metabolism in broilers. Poult. Sci. 91:1210-1221. https://doi.org/10.3382/ps.2011-01886
  19. Chen, P., Q. G. Ma, C. Ji, J.Y. Zhang, L. H. Zhao, Y. Zhang, and Y. Z. Jie. 2011. Dietary lipoic acid influences antioxidant capability and oxidative status of broilers. Int. J. Mol. Sci. 12:8476-8488. https://doi.org/10.3390/ijms12128476
  20. Chen, W., Y. M. Guo, Y. Q. Huang, Y. H. Shi, C. X. Zhang, and J. W. Wang. 2012. Effect of energy restriction on growth, slaughter performance, serum biochemical parameters and Lpin2/WDTC1 mRNA expression of broilers in the later phase. J. Poult. Sci. 49:12-19. https://doi.org/10.2141/jpsa.011001
  21. Choct, M., A. Naylor, O. Hutton, and J. Nolan. 2000. Increasing efficiency of lean tissue composition in broiler chickens. A Report for the Rural Industries Research and Development Corporation. Publication No 98/123. https://rirdc.infoservices.com.au/downloads/98-123. Accessed September 20, 2013.
  22. Choi, J., J. Song, Y. M. Choi, D. J. Jang, E. Kim, I. Kim, and K. M. Chee. 2006. Daidzein modulations of apolipoprotein B and fatty acid synthase mRNA expression in chick liver vary depending on dietary protein levels. Asian Australas. J. Anim. Sci. 19:236-244.
  23. Collin, A., R. D. Malheiros, V. M. B. Moraes, P. Van As, V. M. Darras, M. Taouis, E. Decuypere, and J. Buyse. 2003. Effects of dietary macronutrient content on energy metabolism and uncoupling protein mRNA expression in broiler chickens. Br. J. Nutr. 90:261-269. https://doi.org/10.1079/BJN2003910
  24. Corzo, A., E. T. Jr. Moran, and D. Hoehler. 2003. Arginine need of heavy broiler males: Applying the ideal protein concept. Poult. Sci. 82:402-407. https://doi.org/10.1093/ps/82.3.402
  25. Corzo, A., M. T. Kidd, W. A. Dozier, L. A. Shack, and S. C. Burgess. 2006. Protein expression of pectoralis major muscle in chickens in response to dietary methionine status. Br. J. Nutr. 95:703-708. https://doi.org/10.1079/BJN20051716
  26. Crespo, N. and E. Esteve-Garcia. 2001. Dietary fatty acid profile modifies abdominal fat deposition in broiler chickens. Poult. Sci. 80:71-78. https://doi.org/10.1093/ps/80.1.71
  27. Crespo, N. and E. Esteve-Garcia. 2002a. Dietary polyunsaturated fatty acids decrease fat deposition in separable fat depots but not in the remainder carcass. Poult. Sci. 81:512-518. https://doi.org/10.1093/ps/81.4.512
  28. Crespo, N. and E. Esteve-Garcia. 2002b. Dietary linseed oil produces lower abdominal fat deposition but higher de novo fatty acid synthesis in broiler chickens. Poult. Sci. 81:1555-1562. https://doi.org/10.1093/ps/81.10.1555
  29. Cui, H. X., M. Q. Zheng, R. R. Liu, G. P. Zhao, J. L. Chen, and J. Wen. 2012. Liver dominant expression of fatty acid synthase (FAS) gene in two chicken breeds during intramuscular-fat development. Mol. Biol. Rep. 39:3479-3484. https://doi.org/10.1007/s11033-011-1120-8
  30. Deng, W., X. F. Dong, J. M. Tong, T. H. Xie, and Q. Zhang. 2012. Effects of an aqueous alfalfa extract on production performance, egg quality and lipid metabolism of laying hens. J. Anim. Physiol. Anim. Nutr. 96:85-94. https://doi.org/10.1111/j.1439-0396.2010.01125.x
  31. Dong, X. F., W. W. Gao, J. M. Tong, H. Q. Jia, R. N. Sa, and Q. Zhang. 2007. Effect of polysavone (alfalfa extract) on abdominal fat deposition and immunity in broiler chickens. Poult. Sci. 86:1955-1959. https://doi.org/10.1093/ps/86.9.1955
  32. Du, M. and D. U. Ahn. 2002. Effect of dietary conjugated linoleic acid on the growth rate of live birds and on the abdominal fat content and quality of broiler meat. Poult. Sci. 81:428-433. https://doi.org/10.1093/ps/81.3.428
  33. Eaton, S. 2002. Control of mitochondrial beta-oxidation flux. Prog. Lipid. Res. 41:197-239. https://doi.org/10.1016/S0163-7827(01)00024-8
  34. El-Senousey, H. K., A. M. Fouad, J. H. Yao, Z. G. Zhang, and Q. W. Shen. 2013. Dietary alpha lipoic acid improves body composition, meat quality and decreases collagen content in muscle of broiler chickens. Asian Australas. J. Anim. Sci. 26:394-400. https://doi.org/10.5713/ajas.2012.12430
  35. Emmerson, D. A. 1997. Commercial approaches to genetic selection for growth and feed conversion in domestic poultry. Poult. Sci. 76:1121-1125. https://doi.org/10.1093/ps/76.8.1121
  36. Fan, H. P., M. Xie, W. W. Wang, S. S. Hou, and W. Huang. 2008. Effects of dietary energy on growth performance and carcass quality of white growing pekin ducks from two to six weeks of age. Poult. Sci. 87:1162-1164. https://doi.org/10.3382/ps.2007-00460
  37. Fernandez-Galilea, M., P. Perez-Matute, P. L. Prieto-Hontoria, J. A. Martinez, and M. J. Moreno-Aliaga. 2012. Effects of lipoic acid on lipolysis in 3T3-L1 adipocytes. J. Lipid Res. 53:2296-2306. https://doi.org/10.1194/jlr.M027086
  38. Ferrini, G., E. G.Manzanilla, D. Menoyo, E. Esteve-Garcia, M. D. Baucells, and A. C. Barroeta. 2010. Effects of dietary n-3 fatty acids in fat metabolism and thyroid hormone levels when compared to dietary saturated fatty acids in chickens. Livest. Sci. 131:287-291. https://doi.org/10.1016/j.livsci.2010.03.017
  39. Flock, D. K., K. F. Laughlin, and J. Bentley. 2005. Minimizing losses in poultry breeding and production: How breeding companies contribute to poultry welfare. World's Poult. Sci. J. 61:227-237. https://doi.org/10.1079/WPS200560
  40. Fouad, A. M., H. K. El-Senousey, X. J. Yang, and J. H. Yao. 2012. Role of dietary L-arginine in poultry production. Int. J. Poult. Sci. 11:718-729. https://doi.org/10.3923/ijps.2012.718.729
  41. Fouad, A. M., H. K. El-Senousey, X. J. Yang, and J. H. Yao. 2013. Dietary L-arginine supplementation reduces abdominal fat content by modulating lipid metabolism in broiler chickens. Animal 7:1239-1245. https://doi.org/10.1017/S1751731113000347
  42. Golzar Adabi, S. H., R. G. Cooper, N. Ceylan, and M. Corduk. 2011. L-carnitine and its functional effects in poultry nutrition. World's Poult. Sci. J. 67:277-296. https://doi.org/10.1017/S0043933911000304
  43. Grisoni, M. L., G. Uzu, M. Larbier, and P. A. Geraert. 1991. Effect of dietary lysine on lipogenesis in broilers. Reprod. Nutr. Dev. 31:683-690. https://doi.org/10.1051/rnd:19910608
  44. Halici, M., H. Imik, M. Koc, and R. Gumus. 2012. Effects of $\alpha$-lipoic acid, vitamins E and C upon the heat stress in Japanese quails. J. Anim. Physiol. Anim. Nutr. 96:408-415. https://doi.org/10.1111/j.1439-0396.2011.01156.x
  45. Havenstein, G. B., P. R. Ferket, and M. A. Qureshi. 2003. Growth, livability and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult. Sci. 92:1500-1508.
  46. Hermier, D. 1997. Lipoprotein metabolism and fattening in poultry. J. Nutr. 127:805-808.
  47. Homma, H. and T. Shinohara. 2004. Effects of probiotic Bacillus cereus toyoi on abdominal fat accumulation in the Japanese quail (Coturnix japonica). Anim. Sci. J. 75:37-41. https://doi.org/10.1111/j.1740-0929.2004.00152.x
  48. Jlali, M., V. Gigaud, S. Metayer-Coustard, N. Sellier, S. Tesseraud, E. Le Bihan-Duval, and C. Berri. 2012. Modulation of glycogen and breast meat processing ability by nutrition in chickens: Effect of crude protein level in 2 chicken genotypes. J. Anim. Sci. 90:447-455. https://doi.org/10.2527/jas.2011-4405
  49. Kalavathy, R., N. Abdullah, S. Jalaludin, and Y. W. Ho. 2003. Effects of Lactobacillus cultures on growth performance, abdominal fat deposition, serum lipids and weight of organs of broiler chickens. Br. Poult. Sci. 44:139-144. https://doi.org/10.1080/0007166031000085445
  50. Kalavathy, R., N. Abdullah, S. Jalaludin, M. C. Wong, and Y. W. Ho. 2006. Effects of Lactobacillus feed supplementation on cholesterol, fat content and fatty acid composition of the liver, muscle, and carcass of broiler chickens. Anim. Res. 55:77-82. https://doi.org/10.1051/animres:2005043
  51. Kang, N. H., W. K. Lee, B. R. Yi, M. A. Park, H. R. Lee, S. K. Park, K. A. Hwang, H. K. Park, and K. C. Choi. 2012. Modulation of lipid metabolism by mixtures of protamine and chitooligosaccharide through pancreatic lipase inhibitory activity in a rat model. Lab. Anim. Res. 28:31-38. https://doi.org/10.5625/lar.2012.28.1.31
  52. Kassim, H. and S. Suwanpradit. 1996a. The effect of energy levels on the carcass composition of the broilers. Asian J. Anim. Sci. 9:331-335. https://doi.org/10.5713/ajas.1996.331
  53. Kassim, H. and S. Suwanpradit. 1996b. The effects of dietary protein levels on the carcass composition of starter and grower broilers. Asian Australas. J. Anim. Sci. 9:261-266. https://doi.org/10.5713/ajas.1996.261
  54. Khan, R. U., S. Naz, Z. Nikousefat, V. Tufarelli, and V. Laudadio. 2012. Thymus vulgari: alternative to antibiotics in poultry feed. World's Poult. Sci. J. 68:401-408. https://doi.org/10.1017/S0043933912000517
  55. Kidd, M. T., C. D. McDaniel, E. D. Peebles, S. J. Barber, A. Corzo, S. L. Branton, and J. C. Woodworth. 2005. Breeder hen dietary L-carnitine affects progeny carcase traits. Br. Poult. Sci. 46:97-103. https://doi.org/10.1080/00071660400024027
  56. Klimis-Taventzis, D. J., P. M. Kris-Etherton, and R. M. Jr. Leach. 1983. The effect of dietary manganese deficiency on cholesterol and lipid metabolism in the estrogen-treated chicken and the laying hen. J. Nutr. 113:320-327.
  57. Kobayashi, S. and H. Itoh. 1991. Effect of dietary chitin and chitosan on growth and abdominal fat deposition in chicks. J. Poult. Sci. 28:88-94. https://doi.org/10.2141/jpsa.28.88
  58. Kobayashi, S., Y. Terashima, and H. Itoh. 2002. Effect of dietary chitosan on fat deposition and lipase activity in digesta in broiler chickens. Br. Poult. Sci. 43:270-273. https://doi.org/10.1080/00071660120121490
  59. Li, S., L. Lin, H. Shoufeng, W. Yanping , Z. Liyang, L. Songbai, L. Bin, L. Kui, and X. Luo. 2011. Dietary manganese modulates expression of the manganese-containing superoxide dismutase gene in chickens. J. Nutr. 141:189-194. https://doi.org/10.3945/jn.110.126680
  60. Lu, L., C. Ji, X. G. Luo, B. Liu, and S. X. Yu. 2006. The effect of supplemental manganese in broiler diets on abdominal fat deposition and meat quality. Anim. Feed Sci. Technol. 129:49-59. https://doi.org/10.1016/j.anifeedsci.2005.12.005
  61. Lu, L., X. G. Luo, C. Ji, B. Liu, and S. X. Yu. 2007. Effect of manganese supplementation and source on carcass traits, meat quality, and lipid oxidation in broilers. J. Anim. Sci. 85:812-822.
  62. Moran, E. T. and S. F. Bilgili. 1990. Processing losses, carcass quality and meat yields of broiler chickens receiving diets marginally deficient to adequate in lysine prior to marketing. Poult. Sci. 69:702-710. https://doi.org/10.3382/ps.0690702
  63. Nasr, J. and F. Kheiri. 2011. Effect of different lysine levels on Arian broiler performances. Ital. J. Anim. Sci. 10:170-174.
  64. Newman, R. E., W. L. Bryden, E. Fleck, J. R. Ashes, W. A. Buttemer, L. H. Storlien, and J. A. Downing. 2002. Dietary n-3 and n-6 fatty acids alter avian metabolism: metabolism and abdominal fat deposition. Br. J. Nutr. 88:11-18. https://doi.org/10.1079/BJN2002580
  65. Niu, Z. Y., F. Z. Liu, Y. N. Min, and W. C. Li. 2010. Effects of dietary dihydropyridine supplementation on growth performance and lipid metabolism of broiler chickens. Czech J. Anim. Sci. 55:116-122.
  66. Niu, Z. Y., Y. N. Min, H. Y. Wang, J. Zhang, W. C. Li, L. Li, and F. Z. Liu. 2011. Effects of dietary dihydropyridine on laying performance and lipid metabolism of broiler breeder hens. S. Afr. J. Anim. Sci. 41:331-336.
  67. NRC (National Research Council). 1994. Nutrient Requirements for Poultry. 9th Edn. National Academy Press, Washington DC, USA.
  68. Plavnik, I. and S. Hurwitz. 1985. The performance of broiler chicks during and following a severe feed restriction at an early age. Poult. Sci. 64:348-355. https://doi.org/10.3382/ps.0640348
  69. Plavnik, I. and S. Hurwitz. 1991. Response of broiler chickens and turkey poults to food restriction of varied severity during early life. Br. Poult. Sci. 32:343-352. https://doi.org/10.1080/00071669108417359
  70. Qureshi, A. A., Z. Z. Din, N. Abuirmeleh, W. C. Burger, Y. Ahmad, and C. E. Elson. 1983. Suppression of cholesterogenesis and reduction of LDL cholesterol by dietary ginseng and its fractions in chicken liver. Atherosclerosis 48:81-94. https://doi.org/10.1016/0021-9150(83)90019-9
  71. Rabie, M. H. and M. Szilagyi. 1998. Effects of L-carnitine supplementation of diets differing in energy levels on performance, abdominal fat content, and yield and composition of edible meat of broilers. Br. J. Nutr. 80:391-400. https://doi.org/10.1079/096582198388256
  72. Rezaei, M. and H. Hajati. 2010. Effect of diet dilution at early age on performance, carcass characteristics and blood parameters of broiler chicks. Ital. J. Anim. Sci. 9:93-100.
  73. Richards, M. P., S. M. Poch, C. N. Coon, R. W. Rosebrough, C. M. Ashwellm, and J. P. McMurtry. 2003. Feed restriction significantly alters lipogenic gene expression in broiler breeder chickens. J. Nutr. 133:707-715.
  74. Rosebrough, R. W., B. A. Russell, and M. P. Richards. 2008. Short term changes in expression of lipogenic genes in broilers (Gallus gallus). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 149:389-395. https://doi.org/10.1016/j.cbpa.2008.01.035
  75. Rosebrough, R. W., B. A. Russell, and M. P. Richards. 2011. Further studies on short-term adaptations in the expression of lipogenic genes in broilers. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 159:1-6. https://doi.org/10.1016/j.cbpa.2010.10.032
  76. Rosebrough, R. W., S. M. Poch, B. A. Russell, and M. P. Richards. 2002. Dietary protein regulates in vitro lipogenesis and lipogenic gene expression in broilers. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 132:423-431. https://doi.org/10.1016/S1095-6433(02)00084-3
  77. Royan, M., G. Y. Meng, F. Othman, A. Q. Sazili, and B. Navidshad. 2011. Effects of conjugated linoleic acid, fish oil and soybean oil on PPARs (\alpha & $\gamma$) mRNA expression in broiler chickens and their relation to body fat deposits. Int. J. Mol. Sci. 12: 8581-8595. https://doi.org/10.3390/ijms12128581
  78. Saleh, A. A., Y. Z. Eid, T. A. Ebeid, A. Ohtsuka, K. Hioki, M. Yamamoto, and K. Hayashi. 2012. The modification of the muscle fatty acid profile by dietary supplementation with Aspergillus awamori in broiler chickens. Br. J. Nutr. 108:1596-1602. https://doi.org/10.1017/S0007114511007069
  79. Saleh, A. A., Z. Eid, and K. Hayashi. 2011. Effects of feeding Aspergillus awamori and Aspergillus niger on growth performance and meat quality in broiler chickens. J. Poult. Sci. 48: 201-206. https://doi.org/10.2141/jpsa.011019
  80. Sands, J. S. and M. O. Smith. 1999. Broilers in heat stress conditions: Effects of dietary manganese proteinate or chromium picolinate supplementation. J. Appl. Poult. Res. 8: 280-287. https://doi.org/10.1093/japr/8.3.280
  81. Santoso, U. 2001. Effects of early feed restriction on growth, fat accumulation and meat composition in unsexed broiler chickens. Asian Australas. J. Anim. Sci. 14:1585-1591. https://doi.org/10.5713/ajas.2001.1585
  82. Santoso, U., K. Tanaka, and S. Ohtania. 1995. Effect of dried Bacillus subtilis culture on growth, body composition and hepatic lipogenic enzyme activity in female broiler chicks. Br. J. Nutr. 74:523-529. https://doi.org/10.1079/BJN19950155
  83. Santoso, U., K. Tanaka, S. Ohtani, and B. S. Youn. 1993. Effects of early feed restriction on growth performance and body composition in broilers. Asian Australas. J. Anim. Sci. 6:401-410. https://doi.org/10.5713/ajas.1993.401
  84. Sanz, M., A. Flores, and C. J. Lopez-Bote. 2000a. The metabolic use of energy from dietary fat in broilers is affected by fatty acid saturation. Br. Poult. Sci. 41:61-68.
  85. Sanz, M., A. Flores, P. Perez de Ayala, and C. J. Lopez-Bote. 1999. Higher lipid accumulation in broilers fed on saturated fats than in those fed on unsaturated fats. Br. Poult. Sci. 40:95-101. https://doi.org/10.1080/00071669987908
  86. Sanz, M., C. J. Lopez-Bote, D. Menoyo, and J. M. Bautista. 2000b. Abdominal fat deposition and fatty acid synthesis are lower and $\beta$-oxidation is higher in broiler chickens fed diets containing unsaturated rather than saturated fat. J. Nutr. 130: 3034-3037.
  87. Sato, K., H. Abe, T. Kono, M. Yamazaki, K. Nakashima, T. Kamada, and Y. Akiba. 2009. Changes in peroxisome proliferator-activated receptor gamma gene expression of chicken abdominal adipose tissue with different age, sex and genotype. Anim. Sci. J. 80:322-327. https://doi.org/10.1111/j.1740-0929.2009.00639.x
  88. Shen, Q. W., M. J. Zhu, J. Tong, J. Ren, and M. Du. 2007. $Ca^{2+}$/calmodulin-dependent protein kinase kinase is involved in AMP-activated protein kinase activation by alpha-lipoic acid in $C_2C_{12}$ myotubes. Am. J. Physiol. Cell Physiol. 293: C1395-C1403. https://doi.org/10.1152/ajpcell.00115.2007
  89. Simon, O., K. Manner, K. Schafer, A. Sagredos, and K. Eder. 2000. Effect of conjugated linoleic acid on protein-to-fed proportion, fatty acids and plasma lipids in broilers. Eur. J. Lipid Sci. Technol. 102:402-410. https://doi.org/10.1002/1438-9312(200006)102:6<402::AID-EJLT402>3.0.CO;2-T
  90. Simopoulos, A. P. 2000. Human requirement for N-3 polyunsaturated fatty acids. Poult. Sci. 79:961- 970. https://doi.org/10.1093/ps/79.7.961
  91. Su, S. Y., M. V. Dodson, X. B. Li, Q. F. Li, H. W. Wang, and Z. Xie. 2009. The effects of dietary betaine supplementation on fatty liver performance, serum parameters, histological changes, methylation status and the mRNA expression level of Spot14\alpha in Landes goose fatty liver. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 154:308-314. https://doi.org/10.1016/j.cbpa.2009.05.124
  92. Szymczyk, B., P. M. Pisulewski, W. Szczurek, and P. Hanczakowski. 2001. Effects of conjugated linoleic acid on growth performance, feed conversion efficiency, and subsequent carcass quality in broiler chickens. Br. J. Nutr. 85:465-473. https://doi.org/10.1079/BJN2000293
  93. Takahashi, K. and Y. Akiba. 1995. Effect of methionine supplementation on lipogenesis and lipolysis in broiler chickens. J. Poult. Sci. 32:99-106. https://doi.org/10.2141/jpsa.32.99
  94. Tan, B. J. and S. Ohtani. 2000. Effect of different early feed restriction regimens on performance, carcass composition and lipid metabolism in male ducks. Anim. Sci. J. 71:586-593.
  95. Tanaka, K., S. Ohyani, and K. Shigeno. 1983. Effect of increasing dietary energy on hepatic lipogenesis in growing chicks. II. Increasing energy by fat or protein supplementation. Poult. Sci. 62:452-458. https://doi.org/10.3382/ps.0620452
  96. Tesseraud, S., I. Bouvarel, A. Collin, E. Audouin, S.Crochet, I. Seiliez, and C. Leterrier. 2009. Daily variations in dietary lysine content alter the expression of genes related to proteolysis in chicken pectoralis major muscle. J. Nutr. 139: 38-43.
  97. Thomas, V. G., S. K. Mainguy, and J. P. Prevett. 1983. Predicting fat-content of geese from abdominal fat weight. J. Wildl. Manage. 47:1115-1119. https://doi.org/10.2307/3808172
  98. Virtanen, E. 1995. Piecing together the betaine puzzle. Feed Mix 3:12-17.
  99. Wang, S. Z., X. X. Hu, Z. P. Wang, X. C. Li, Q. G. Wang, Y. X. Wang, Z. Q. Tang, and H. Li. 2012. Quantitative trait loci associated with body weight and abdominal fat traits on chicken chromosomes 3, 5 and 7. Genet. Mol. Res. 11:956-965. https://doi.org/10.4238/2012.April.19.1
  100. Wang, Y. Z., Z. R. Xu, and J. Feng. 2004. The effect of betaine and DL-methionine on growth performance and carcass characteristics in meat ducks. Anim. Feed Sci. Technol. 116: 151-159. https://doi.org/10.1016/j.anifeedsci.2004.05.003
  101. Wang, Y., Y. Mu, H. Li, N. Ding, Q. Wang, Y. Wang, S. Wang, and N. Wang. 2008. Peroxisome proliferator-activated receptor-$\gamma$ gene: A key regulator of adipocyte differentiation in chickens. Poult. Sci. 87:226-232. https://doi.org/10.3382/ps.2007-00329
  102. Wang, Z. Y., S. R. Shi, Q. Y. Zhou, H. M. Yang, J. M. Zou, K. N. Zhang, and H. M. Han. 2010. Response of growing goslings to dietary methionine from 28 to 70 days of age. Br. Poult. Sci. 51:118-121. https://doi.org/10.1080/00071660903431406
  103. Wu, L., X. Guo, and Y. Fang. 2012. Effect of diet dilution ratio at early age on growth performance, carcass characteristics and hepatic lipogenesis of Pekin ducks. Braz. J. Poult. Sci. 14:43-49.
  104. Wu, L. Y., Y. J. Fang, and X. Y. Guo. 2011. Dietary Larginine supplementation beneficially regulates body fat deposition of meat-type ducks. Br. Poult. Sci. 52:221-226. https://doi.org/10.1080/00071668.2011.559452
  105. Xie, M., J. N. Zhao, S. S. Hou, and W. Huang. 2010. The apparent metabolizable energy requirement of White Pekin ducklings from hatch to 3 weeks of age. Anim. Feed Sci. Technol. 157: 95-98. https://doi.org/10.1016/j.anifeedsci.2010.01.011
  106. Xie, M., S. S. Hou, and W. Huang. 2006. Methionine requirements of male white Peking ducks from twenty-one to forty nine days of age. Poult. Sci. 85:743-746. https://doi.org/10.1093/ps/85.4.743
  107. Xing, J., L. Kang, and Y. Jiang. 2011. Effect of dietary betaine supplementation on lipogenesis gene expression and CpG methylation of lipoprotein lipase gene in broilers. Mol. Biol. Rep. 38:1975-1981. https://doi.org/10.1007/s11033-010-0319-4
  108. Xing, J., L. Kang, Y. Hu, Q. Xu, N. Zhang, and Y. Jiang. 2009. Effect of dietary betaine supplementation on mRNA expression and promoter CpG methylation of lipoprotein lipase gene in laying hens. J. Poult. Sci. 46:224-228. https://doi.org/10.2141/jpsa.46.224
  109. Xiong, M., S. Li, Peng, Y. Feng, G. Yu, Q. Xin, and Y. Gong. 2010. Adipogenesis in ducks interfered by small interfering ribonucleic acids of peroxisome proliferator-activated receptor $\gamma$ gene. Poult. Sci. 89:88-95. https://doi.org/10.3382/ps.2009-00289
  110. Xu, Z. R., M. Q. Wang, H. X. Mao, X. A. Zhan, and C. H. Hu. 2003. Effects of L-carnitine on growth performance, carcass composition, and metabolism of lipids in male broilers. Poult. Sci. 82:408-413. https://doi.org/10.1093/ps/82.3.408
  111. Yalcin, S., H. Ozkul, S. Ozkan, R. Gous, I. Yasa, and E. Babacanoglu. 2010. Effect of dietary protein regime on meat quality traits and carcase nutrient content of broilers from two commercial genotypes. Br. Poult. Sci. 51:621-628. https://doi.org/10.1080/00071668.2010.520302
  112. Yamamoto, M., F. Saleh, M. Tahir, A. Ohtsuka, and K. Hayashi. 2007. The effect of Koji-fed (fermented distillery byproduct) on the growth performance and nutrient metabolizability in broiler. J. Poult. Sci. 44:291-296. https://doi.org/10.2141/jpsa.44.291
  113. Yan, L., Q. W. Meng, J. H. Lee, J. P. Wang, and I. H. Kim. 2011a. Effect of dietary wildginseng adventitious root meal on growth performance, blood profiles, relative organ weight and meat quality in broiler chickens. Asian Australas. J. Anim. Sci. 24: 258-263. https://doi.org/10.5713/ajas.2011.10222
  114. Yan, L., Q. W. Meng, X. Ao, J. P. Wang, H. D. Jang, and I. H. Kim. 2011b. Evaluation of dietary wild-ginseng adventitious root meal on egg production, egg quality, hematological profiles and egg yolk fatty acid composition in laying hens. Livest. Sci. 140:201-205. https://doi.org/10.1016/j.livsci.2011.03.033
  115. Yang, X., J. Zhuang, K. Rao, X. Li, and R. Zhao. 2010. Effect of early feed restriction on hepatic lipid metabolism and expression of lipogenic genes in broiler chickens. Res. Vet. Sci. 89:438-444. https://doi.org/10.1016/j.rvsc.2010.04.003
  116. Yao, J. H., S. Q. Li, L. L. Zhong, S. X. Huang, W. J. Zhang, and H. B. Xi. 2006. The relative effectiveness of liquid methionine hydroxy analogue compared to DL-methionine in broilers. Asian Australas. J. Anim. Sci. 19:1026-1032. https://doi.org/10.5713/ajas.2006.1026
  117. Zhan, X. A., J. X. Li, Z. R. Xu, and R. Q. Zhao. 2006. Effects of methionine and betaine supplementation on growth performance, carcase composition and metabolism of lipids in male broilers. Br. Poult. Sci. 47:576-580. https://doi.org/10.1080/00071660600963438
  118. Zhang, G. M., J. Wen, J. L. Chen, G. P. Zhao, M. Q. Zheng, and W. J. Li. 2007. Effect of conjugated linoleic acid on growth performances, carcass composition, plasma lipoprotein lipase activity and meat traits of chicken. Br. Poult. Sci. 48:217-223. https://doi.org/10.1080/00071660701255841
  119. Zhang, X., B. Wang, F. Long, L. Wang, and Z. Yang. 2009a. The effect of dietary conjugated linoleic acid (CLA) on fatty acid composition and key enzymes of fatty acids oxidation in liver and muscle of geese. Turk. J. Vet. Anim. Sci. 33:215-222.
  120. Zhang, Y., K. Hongtrakul, Q. G. Ma, L. T. Liu, and X. X. Hu. 2009b. Effects of dietary alpha-lipoic acid on anti-oxidative ability and meat quality in Arbor Acres broilers. Asian Australas. J. Anim. Sci. 22:1195-1201. https://doi.org/10.5713/ajas.2009.90101
  121. Zhong, C., H. S. Nakaue, C. Y. Hu, and L. W. Mirosh. 1995. Effect of full food and early food restriction on broiler performance, abdominal fat level, cellularity and fat metabolism in broiler chickens. Poult. Sci. 74:1636-1643. https://doi.org/10.3382/ps.0741636
  122. Zhou, H., N. Deeb, C. M. Evock-Clover, C. M. Ashwel, and S. J. Lamont. 2006. Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic traits in the chicken. II. Body composition. Poult. Sci. 85:1712-1721. https://doi.org/10.1093/ps/85.10.1712
  123. Zhou, J. 2008. Effect of dietary conjugated linoleic acid (CLA) on abdominal fat deposition in yellow-feather broiler chickens and its possible mechanism. Asian Australas. J. Anim. Sci. 21:1760-1765. https://doi.org/10.5713/ajas.2008.80165
  124. Zhou, T. X., Y. J. Chen, J. S. Yoo, Y. Huang, J. H. Lee, H. D. Jang, S. O. Shin, H. J. Kim, J. H. Cho, and I. H. Kim. 2009. Effects of chitooligosaccharide supplementation on performance, blood characteristics, relative organ weight, and meat quality in broiler chickens. Poult. Sci. 88:593-600. https://doi.org/10.3382/ps.2008-00285
  125. Zou, X. T., Z. R. Xu, J. L. Zhu, X. J. Fang, and J. F. Jiang. 2007. Effects of dietary dihydropyridine supplementation on laying performance and fat metabolism of laying hens. Asian Australas. J. Anim. Sci. 20:1606-1611. https://doi.org/10.5713/ajas.2007.1606

Cited by

  1. Effect of Cottonseed Meal Fermented with Yeast on the Lipid-related Gene Expression in Broiler Chickens vol.17, pp.spe, 2015, https://doi.org/10.1590/1516-635XSPECIALISSUENutrition-PoultryFeedingAdditives057-064
  2. Single injection of clenbuterol into newly hatched chicks decreases abdominal fat pad weight in growing broiler chickens vol.87, pp.10, 2015, https://doi.org/10.1111/asj.12541
  3. The potential of replacing soyabean oil cake with macadamia oil cake in broiler diets vol.48, pp.6, 2016, https://doi.org/10.1007/s11250-016-1057-y
  4. Performances and haematological profile of broilers fed fermented dried cassava (Manihot esculenta Crantz) vol.48, pp.7, 2016, https://doi.org/10.1007/s11250-016-1098-2
  5. Effects of dietary methionine on performance, egg quality and glutathione redox system in egg-laying ducks vol.57, pp.6, 2016, https://doi.org/10.1080/00071668.2016.1222603
  6. Physiological and pathophysiological aspects of peroxisome proliferator-activated receptor regulation by fatty acids in poultry species vol.72, pp.03, 2016, https://doi.org/10.1017/S0043933916000490
  7. Lipid Formation and mRNA Expression of Key Adipogenic Genes in the Liver of Athens Canadian Random Breed and COBB Chicken Breeds During the Embryogenic Period vol.16, pp.10, 2017, https://doi.org/10.3923/ijps.2017.374.380
  8. Comparison of Fatness and Meat Quality of Kampung Chickens, Arabic Chickens and Laying Type Cockerels at Different Slaughtering Ages vol.16, pp.3, 2017, https://doi.org/10.3923/ijps.2017.105.111
  9. COMPLEXO ENZIMÁTICO E FARELO DE ARROZ INTEGRAL SOBRE O DESEMPENHO PRODUTIVO E QUALIDADE DOS OVOS DE POEDEIRAS EM SEGUNDO CICLO DE PRODUÇÃO vol.18, pp.0, 2017, https://doi.org/10.1590/1089-6891v18e-18117
  10. Preventing subclinical necrotic enteritis through Lactobacillus johnsonii BS15 by ameliorating lipid metabolism and intestinal microflora in broiler chickens vol.7, pp.1, 2017, https://doi.org/10.1186/s13568-017-0439-5
  11. In ovo injection of betaine alleviates corticosterone-induced fatty liver in chickens through epigenetic modifications vol.7, pp.2045-2322, 2017, https://doi.org/10.1038/srep40251
  12. Factors affecting adipose tissue development in chickens: A review vol.96, pp.10, 2017, https://doi.org/10.3382/ps/pex184
  13. Effects of dietary lysine supplementation on performance, egg quality, and development of reproductive system in egg-laying ducks pp.0974-1844, 2017, https://doi.org/10.1080/09712119.2017.1308868
  14. Metabolomics reveals the mechanism of (−)-hydroxycitric acid promotion of protein synthesis and inhibition of fatty acid synthesis in broiler chickens pp.1751-732X, 2017, https://doi.org/10.1017/S175173111700221X
  15. The effect of supplementation of multistrain probiotic preparation in combination with vitamins and minerals to the basal diet on the growth performance, carcass traits, and physiological response of broilers vol.11, pp.2, 2018, https://doi.org/10.14202/vetworld.2018.240-247
  16. Effects of dietary methionine on productivity, reproductive performance, antioxidant capacity, ovalbumin and antioxidant-related gene expression in laying duck breeders vol.119, pp.02, 2018, https://doi.org/10.1017/S0007114517003397
  17. Nutritional requirements of meat-type and egg-type ducks: what do we know? vol.9, pp.1, 2018, https://doi.org/10.1186/s40104-017-0217-x
  18. Alternative Transcription of Peroxisome Proliferator-Activated Receptor Gamma in the Liver Is Associated with Fatness of Chickens vol.20, pp.3, 2018, https://doi.org/10.1590/1806-9061-2017-0661
  19. and their correlation with fat deposition in Yunnan’s top six famous chicken breeds vol.59, pp.5, 2018, https://doi.org/10.1080/00071668.2018.1490494
  20. Integration of genome wide association studies and whole genome sequencing provides novel insights into fat deposition in chicken vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-34364-0
  21. Evaluation of hepatic lipogenesis and antioxidant status of broiler chickens fed mountain celery vol.14, pp.1, 2018, https://doi.org/10.1186/s12917-018-1561-6
  22. Genomic Insights Into the Multiple Factors Controlling Abdominal Fat Deposition in a Chicken Model vol.9, pp.1664-8021, 2018, https://doi.org/10.3389/fgene.2018.00262
  23. Effect of probiotic and vinegar on growth performance, meat yields, immune responses, and small intestine morphology of broiler chickens vol.17, pp.3, 2018, https://doi.org/10.1080/1828051X.2018.1424570
  24. Hematological parameters and selected intestinal microbiota populations in the Indonesian indigenous crossbred chickens fed basal diet supplemented with multi-strain probiotic preparation in combination with vitamins and minerals vol.11, pp.6, 2018, https://doi.org/10.14202/vetworld.2018.874-882
  25. Transcriptional analysis of liver from chickens with fast (meat bird), moderate (F1 layer x meat bird cross) and low (layer bird) growth potential vol.19, pp.1, 2018, https://doi.org/10.1186/s12864-018-4723-9
  26. Effects of diets with different energy and bile acids levels on growth performance and lipid metabolism in broilers vol.98, pp.2, 2019, https://doi.org/10.3382/ps/pey434
  27. Assessment of Meat Quality and Shelf Life from Broilers Fed with Different Sources and Concentrations of Methionine vol.2019, pp.1745-4557, 2019, https://doi.org/10.1155/2019/6182580
  28. Active transport of glucose across the jejunal epithelium decreases with age in broiler chickens pp.1525-3171, 2019, https://doi.org/10.3382/ps/pez002
  29. Effects of dietary probiotic supplementation onLXRαandCYP7α1gene expression, liver enzyme activities and fat metabolism in ducks vol.56, pp.2, 2014, https://doi.org/10.1080/00071668.2014.1000821
  30. Effect of Nonsaponifiable Fraction of Avocado Oil on Body Weight, Body Fat and Blood Lipid Profile of Broiler Chickens vol.9, pp.3, 2014, https://doi.org/10.3923/ajpsaj.2015.144.154
  31. Effects of Dietary Manganese Supplementation on Laying Performance, Egg Quality and Antioxidant Status in Laying Ducks vol.11, pp.9, 2014, https://doi.org/10.3923/ajava.2016.570.575
  32. 닭의 지방대사와 지방간 vol.45, pp.2, 2014, https://doi.org/10.5536/kjps.2018.45.2.109
  33. Growth Performance, Carcass Traits and Breast Meat Fatty Acids Profile of Helmeted Guinea Fowls (Numida meleagris) Fed Increasing Level of Linseed (Linum usitatissimum) and Pumpkin Seed (Cucurbita mos vol.20, pp.4, 2014, https://doi.org/10.1590/1806-9061-2018-0760
  34. Effects of Dietary Supplementation with Red Algae Powder (Chondrus crispus) on Growth Performance, Carcass Traits, Lymphoid Organ Weights and Intestinal pH in Broilers vol.21, pp.4, 2014, https://doi.org/10.1590/1806-9061-2019-1015
  35. Lipid Sources in Diets for Hy-Line White Laying: Performance, Biometrics of Digestive Organs, and Bone Characteristics vol.21, pp.3, 2019, https://doi.org/10.1590/1806-9061-2019-1032
  36. Harmful Effects and Control Strategies of Aflatoxin B 1 Produced by Aspergillus flavus and Aspergillus parasiticus Strains on Poultry: Review vol.11, pp.3, 2014, https://doi.org/10.3390/toxins11030176
  37. Whole-Life or Fattening Period Only Broiler Feeding Strategies Achieve Similar Levels of Omega-3 Fatty Acid Enrichment Using the DHA-Rich Protist, Aurantiochytrium limacinum vol.9, pp.6, 2014, https://doi.org/10.3390/ani9060327
  38. Omega-3 and Omega-6 Fatty Acids in Poultry Nutrition: Effect on Production Performance and Health vol.9, pp.8, 2019, https://doi.org/10.3390/ani9080573
  39. Implications of Gene Inheritance Patterns on the Heterosis of Abdominal Fat Deposition in Chickens vol.10, pp.10, 2019, https://doi.org/10.3390/genes10100824
  40. Effects of chitin and chitosan from cricket and shrimp on growth and carcass performance of broiler chickens vol.51, pp.8, 2019, https://doi.org/10.1007/s11250-019-01936-9
  41. Dynamics of transcriptome changes during subcutaneous preadipocyte differentiation in ducks vol.20, pp.1, 2019, https://doi.org/10.1186/s12864-019-6055-9
  42. Folic acid perfusion administration reduced abdominal fat deposition in starter Arbor Acres broilers vol.98, pp.12, 2014, https://doi.org/10.3382/ps/pez413
  43. Dietary supplementation with L-arginine and combinations of different oil sources beneficially regulates body fat deposition, lipogenic gene expression, growth performance and carcass yield in broiler vol.60, pp.11, 2014, https://doi.org/10.1071/an19205
  44. Effect of Soybean Meal Substitution by Raw Chickpea Seeds on Thermal Properties and Fatty Acid Composition of Subcutaneous Fat Tissue of Broiler Chickens vol.10, pp.3, 2014, https://doi.org/10.3390/ani10030533
  45. Association of residual feed intake with growth performance, carcass traits, meat quality, and blood variables in native chickens vol.98, pp.7, 2014, https://doi.org/10.1093/jas/skaa121
  46. Impact of feeding varying grower digestible lysine and energy levels to female Cobb MV × Cobb 500 broilers from 14 to 28 D on 42 D growth performance, processing, and economic return vol.29, pp.3, 2014, https://doi.org/10.1016/j.japr.2020.03.006
  47. Effect of Sequential Feeding with Variations in Energy and Protein Levels on Performances of Sasso Broilers Under Hot and Humid Climate vol.19, pp.9, 2014, https://doi.org/10.3923/ijps.2020.416.423
  48. Secondary Functions of Arginine and Sulfur Amino Acids in Poultry Health: Review vol.10, pp.11, 2014, https://doi.org/10.3390/ani10112106
  49. Effects of Dietary Fiber on Growth Performance, Fat Deposition, Fat Metabolism, and Expression of Lipoprotein Lipase Mrna in Two Breeds of Geese vol.23, pp.3, 2014, https://doi.org/10.1590/1806-9061-2020-1287
  50. Impact of Dietary Betaine and Metabolizable Energy Levels on Profiles of Proteins and Lipids, Bioenergetics, Peroxidation and Quality of Meat in Japanese Quail vol.11, pp.1, 2014, https://doi.org/10.3390/ani11010117
  51. Effect of diet nutrients density on performance and egg quality of laying hens during the post-peak production phase of the first laying cycle under subtropical climate vol.20, pp.1, 2014, https://doi.org/10.1080/1828051x.2021.1900753
  52. Dose titration of plantain herb (Plantago lanceolata L.) supplementation on growth performance, serum antioxidants status, liver enzymatic activity and meat quality in broiler chickens vol.20, pp.1, 2021, https://doi.org/10.1080/1828051x.2021.1952114
  53. Influence of liquid probiotic inclusion as feed additives on lipid profiles and meat cholesterol content of commercial broiler chickens vol.667, pp.1, 2014, https://doi.org/10.1088/1755-1315/667/1/012075
  54. Effects of Supplemental Feed with Different Levels of Dietary Metabolizable Energy on Growth Performance and Carcass Characteristics of Grazing Naturalized Swan Geese (Anser cygnoides) vol.11, pp.3, 2014, https://doi.org/10.3390/ani11030711
  55. Effects of feeding ISA brown and Shaver white layer breeders with sources of n-3 fatty acids on hatching egg profiles, apparent embryonic uptake of egg components, and body composition of day-old chic vol.101, pp.1, 2014, https://doi.org/10.1139/cjas-2020-0026
  56. Hesperidin and Naringin Improve Broiler Meat Fatty Acid Profile and Modulate the Expression of Genes Involved in Fatty Acid β-oxidation and Antioxidant Defense in a Dose Dependent Manner vol.10, pp.4, 2021, https://doi.org/10.3390/foods10040739
  57. Giblets and abdominal fat of pomegranate seed oil fed chickens as a source of bioactive fatty acids vol.105, pp.3, 2014, https://doi.org/10.1111/jpn.13464
  58. Effect of black soldier fly (Hermetia illucens) meals in the diet on the growth performance and carcass composition in broilers vol.7, pp.3, 2021, https://doi.org/10.3920/jiff2019.0050
  59. Interaction of Soybean Varieties and Heat Treatments and Its Effect on Growth Performance and Nutrient Digestibility in Broiler Chickens vol.11, pp.9, 2014, https://doi.org/10.3390/ani11092668
  60. Effect of dietary replacement of soybean meal with linseed meal on feed intake, growth performance and carcass quality of broilers vol.7, pp.11, 2014, https://doi.org/10.1016/j.heliyon.2021.e08297
  61. The genetic basis and robustness of naked neck mutation in chicken vol.53, pp.1, 2014, https://doi.org/10.1007/s11250-020-02505-1