References
- Abdulkarimi, R., M. Daneshyar, and A. Aghazadeh. 2011. Thyme (Thymus vulgaris) extract consumption darkens liver, lowers blood cholesterol, proportional liver and abdominal fat weights in broiler chickens. Ital. J. Anim. Sci. 10:101-105.
- Adams, K. A. and A. J. Davis. 2001. Dietary protein concentration regulates the mRNA expression of chicken hepatic malic enzyme. J. Nutr. 131:2269-2274.
- Al-Daraji, H. J., A. A. Al-Mashadani, W. K. Al-Hayani, A. S. AlHassani, and H. A. Mirza. 2011. Influence of in ovo injection of L-arginine on productive and physiological performance of quails. Res. Opin. Anim. Vet. Sci. 7:463-467.
- Al-Kassie, G. A. M. 2009. Influence of two plant extracts derived from thyme and cinnamon on broiler performance. Pak. Vet. J. 29:169-173.
- Andi, M. A. 2012. Effects of additional DL-methionine in broiler starter diet on blood lipids and abdominal fat. Afr. J. Biotechnol. 11:7579-7581.
- Arslan, C., M. Citil, and M. Saatci. 2003. Effect of L-carnitine administration on growth performance, carcass traits, blood serum parameters and abdominal fatty acid composition of ducks. Arch. Anim. Nutr. 57:381-388. https://doi.org/10.1080/00039420310001607734
- Arslan, C., M. Citil, and M. Saatci. 2004. Effects of L-carnitine administration on growth performance, carcass traits, serum lipids and abdominal fatty acid compositions of geese. Rev. Med. Vet. 155:315-320.
- Attia, Y. A. 2003. Performance, carcass characteristics, meat quality and plasma constituents of meat type drakes fed diets containing different levels of lysine with or without a microbial phytase. Arch. Anim. Nutr. 57:39-48. https://doi.org/10.1080/0003942031000086635
- Back, D. W., M. J. Goldman, J. E. Fisch, R. S. Ochs, and A. G. Goodridge. 1986. The fatty acid synthase gene in avian liver. Two mRNAs are expressed and regulated in parallel by feeding, primarily at the level of transcription. J. Biol. Chem. 261:4190-4197.
- Badinga, L., K. T. Selberg, A. C. Dinges, C. W. Comer, and R. D. Miles. 2003. Dietary conjugated linoleic acid alters hepatic lipid content and fatty acid composition in broiler chickens. Poult. Sci. 82:111-116. https://doi.org/10.1093/ps/82.1.111
- Baeza, E. and E. Le Bihan-Duval. 2013. Chicken lines divergent for low or high abdominal fat deposition: A relevant model to study the regulation of energy metabolism. Animal 7:965-973. https://doi.org/10.1017/S1751731113000153
- Baiao, N. C. and L. J. C. Lara. 2005. Oil and fat in broiler nutrition. Brazilian J. Poult. Sci. 7:129-141.
- Bakutis, B. and Y. Bukis. 1984. Antioxidants in feeding of broiler ducks. J. Ptitsevodstvo10:21-22.
- Becker, W. A., J. V. Spencer, L. W. Mirosh, and J. A. Verstrate. 1979. Prediction of fat and fat free live weight in broiler chickens using back skin fat, abdominal fat and live body weight. Poult. Sci. 58:835-842. https://doi.org/10.3382/ps.0580835
- Berri, C., J. Besnard, and C. Relandeau. 2008. Increasing dietary lysine increases final pH and decreases drip loss of broiler breast meat. Poult. Sci. 87:480-484. https://doi.org/10.3382/ps.2007-00226
- Biswas, Md. A. H. and M. Wakita. 2001. Effect of dietary Japanese green tea powder supplementation on feed utilization and carcass profiles in broilers. J. Poult. Sci. 38:50-57. https://doi.org/10.2141/jpsa.38.50
- Butterwith, S. C. 1989. Contribution of lipoprotein lipase activity to the differential growth of three adipose tissue depots in young broiler chickens. Br. Poult. Sci. 30:927-933. https://doi.org/10.1080/00071668908417219
- Cao, F. L., X. H. Zhang, W. W. Yu, L. G. Zhao, and T. Wang. 2012. Effect of feeding fermented Ginkgo biloba leaves on growth performance, meat quality, and lipid metabolism in broilers. Poult. Sci. 91:1210-1221. https://doi.org/10.3382/ps.2011-01886
- Chen, P., Q. G. Ma, C. Ji, J.Y. Zhang, L. H. Zhao, Y. Zhang, and Y. Z. Jie. 2011. Dietary lipoic acid influences antioxidant capability and oxidative status of broilers. Int. J. Mol. Sci. 12:8476-8488. https://doi.org/10.3390/ijms12128476
- Chen, W., Y. M. Guo, Y. Q. Huang, Y. H. Shi, C. X. Zhang, and J. W. Wang. 2012. Effect of energy restriction on growth, slaughter performance, serum biochemical parameters and Lpin2/WDTC1 mRNA expression of broilers in the later phase. J. Poult. Sci. 49:12-19. https://doi.org/10.2141/jpsa.011001
- Choct, M., A. Naylor, O. Hutton, and J. Nolan. 2000. Increasing efficiency of lean tissue composition in broiler chickens. A Report for the Rural Industries Research and Development Corporation. Publication No 98/123. https://rirdc.infoservices.com.au/downloads/98-123. Accessed September 20, 2013.
- Choi, J., J. Song, Y. M. Choi, D. J. Jang, E. Kim, I. Kim, and K. M. Chee. 2006. Daidzein modulations of apolipoprotein B and fatty acid synthase mRNA expression in chick liver vary depending on dietary protein levels. Asian Australas. J. Anim. Sci. 19:236-244.
- Collin, A., R. D. Malheiros, V. M. B. Moraes, P. Van As, V. M. Darras, M. Taouis, E. Decuypere, and J. Buyse. 2003. Effects of dietary macronutrient content on energy metabolism and uncoupling protein mRNA expression in broiler chickens. Br. J. Nutr. 90:261-269. https://doi.org/10.1079/BJN2003910
- Corzo, A., E. T. Jr. Moran, and D. Hoehler. 2003. Arginine need of heavy broiler males: Applying the ideal protein concept. Poult. Sci. 82:402-407. https://doi.org/10.1093/ps/82.3.402
- Corzo, A., M. T. Kidd, W. A. Dozier, L. A. Shack, and S. C. Burgess. 2006. Protein expression of pectoralis major muscle in chickens in response to dietary methionine status. Br. J. Nutr. 95:703-708. https://doi.org/10.1079/BJN20051716
- Crespo, N. and E. Esteve-Garcia. 2001. Dietary fatty acid profile modifies abdominal fat deposition in broiler chickens. Poult. Sci. 80:71-78. https://doi.org/10.1093/ps/80.1.71
- Crespo, N. and E. Esteve-Garcia. 2002a. Dietary polyunsaturated fatty acids decrease fat deposition in separable fat depots but not in the remainder carcass. Poult. Sci. 81:512-518. https://doi.org/10.1093/ps/81.4.512
- Crespo, N. and E. Esteve-Garcia. 2002b. Dietary linseed oil produces lower abdominal fat deposition but higher de novo fatty acid synthesis in broiler chickens. Poult. Sci. 81:1555-1562. https://doi.org/10.1093/ps/81.10.1555
- Cui, H. X., M. Q. Zheng, R. R. Liu, G. P. Zhao, J. L. Chen, and J. Wen. 2012. Liver dominant expression of fatty acid synthase (FAS) gene in two chicken breeds during intramuscular-fat development. Mol. Biol. Rep. 39:3479-3484. https://doi.org/10.1007/s11033-011-1120-8
- Deng, W., X. F. Dong, J. M. Tong, T. H. Xie, and Q. Zhang. 2012. Effects of an aqueous alfalfa extract on production performance, egg quality and lipid metabolism of laying hens. J. Anim. Physiol. Anim. Nutr. 96:85-94. https://doi.org/10.1111/j.1439-0396.2010.01125.x
- Dong, X. F., W. W. Gao, J. M. Tong, H. Q. Jia, R. N. Sa, and Q. Zhang. 2007. Effect of polysavone (alfalfa extract) on abdominal fat deposition and immunity in broiler chickens. Poult. Sci. 86:1955-1959. https://doi.org/10.1093/ps/86.9.1955
- Du, M. and D. U. Ahn. 2002. Effect of dietary conjugated linoleic acid on the growth rate of live birds and on the abdominal fat content and quality of broiler meat. Poult. Sci. 81:428-433. https://doi.org/10.1093/ps/81.3.428
- Eaton, S. 2002. Control of mitochondrial beta-oxidation flux. Prog. Lipid. Res. 41:197-239. https://doi.org/10.1016/S0163-7827(01)00024-8
- El-Senousey, H. K., A. M. Fouad, J. H. Yao, Z. G. Zhang, and Q. W. Shen. 2013. Dietary alpha lipoic acid improves body composition, meat quality and decreases collagen content in muscle of broiler chickens. Asian Australas. J. Anim. Sci. 26:394-400. https://doi.org/10.5713/ajas.2012.12430
- Emmerson, D. A. 1997. Commercial approaches to genetic selection for growth and feed conversion in domestic poultry. Poult. Sci. 76:1121-1125. https://doi.org/10.1093/ps/76.8.1121
- Fan, H. P., M. Xie, W. W. Wang, S. S. Hou, and W. Huang. 2008. Effects of dietary energy on growth performance and carcass quality of white growing pekin ducks from two to six weeks of age. Poult. Sci. 87:1162-1164. https://doi.org/10.3382/ps.2007-00460
- Fernandez-Galilea, M., P. Perez-Matute, P. L. Prieto-Hontoria, J. A. Martinez, and M. J. Moreno-Aliaga. 2012. Effects of lipoic acid on lipolysis in 3T3-L1 adipocytes. J. Lipid Res. 53:2296-2306. https://doi.org/10.1194/jlr.M027086
- Ferrini, G., E. G.Manzanilla, D. Menoyo, E. Esteve-Garcia, M. D. Baucells, and A. C. Barroeta. 2010. Effects of dietary n-3 fatty acids in fat metabolism and thyroid hormone levels when compared to dietary saturated fatty acids in chickens. Livest. Sci. 131:287-291. https://doi.org/10.1016/j.livsci.2010.03.017
- Flock, D. K., K. F. Laughlin, and J. Bentley. 2005. Minimizing losses in poultry breeding and production: How breeding companies contribute to poultry welfare. World's Poult. Sci. J. 61:227-237. https://doi.org/10.1079/WPS200560
- Fouad, A. M., H. K. El-Senousey, X. J. Yang, and J. H. Yao. 2012. Role of dietary L-arginine in poultry production. Int. J. Poult. Sci. 11:718-729. https://doi.org/10.3923/ijps.2012.718.729
- Fouad, A. M., H. K. El-Senousey, X. J. Yang, and J. H. Yao. 2013. Dietary L-arginine supplementation reduces abdominal fat content by modulating lipid metabolism in broiler chickens. Animal 7:1239-1245. https://doi.org/10.1017/S1751731113000347
- Golzar Adabi, S. H., R. G. Cooper, N. Ceylan, and M. Corduk. 2011. L-carnitine and its functional effects in poultry nutrition. World's Poult. Sci. J. 67:277-296. https://doi.org/10.1017/S0043933911000304
- Grisoni, M. L., G. Uzu, M. Larbier, and P. A. Geraert. 1991. Effect of dietary lysine on lipogenesis in broilers. Reprod. Nutr. Dev. 31:683-690. https://doi.org/10.1051/rnd:19910608
-
Halici, M., H. Imik, M. Koc, and R. Gumus. 2012. Effects of
$\alpha$ -lipoic acid, vitamins E and C upon the heat stress in Japanese quails. J. Anim. Physiol. Anim. Nutr. 96:408-415. https://doi.org/10.1111/j.1439-0396.2011.01156.x - Havenstein, G. B., P. R. Ferket, and M. A. Qureshi. 2003. Growth, livability and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult. Sci. 92:1500-1508.
- Hermier, D. 1997. Lipoprotein metabolism and fattening in poultry. J. Nutr. 127:805-808.
- Homma, H. and T. Shinohara. 2004. Effects of probiotic Bacillus cereus toyoi on abdominal fat accumulation in the Japanese quail (Coturnix japonica). Anim. Sci. J. 75:37-41. https://doi.org/10.1111/j.1740-0929.2004.00152.x
- Jlali, M., V. Gigaud, S. Metayer-Coustard, N. Sellier, S. Tesseraud, E. Le Bihan-Duval, and C. Berri. 2012. Modulation of glycogen and breast meat processing ability by nutrition in chickens: Effect of crude protein level in 2 chicken genotypes. J. Anim. Sci. 90:447-455. https://doi.org/10.2527/jas.2011-4405
- Kalavathy, R., N. Abdullah, S. Jalaludin, and Y. W. Ho. 2003. Effects of Lactobacillus cultures on growth performance, abdominal fat deposition, serum lipids and weight of organs of broiler chickens. Br. Poult. Sci. 44:139-144. https://doi.org/10.1080/0007166031000085445
- Kalavathy, R., N. Abdullah, S. Jalaludin, M. C. Wong, and Y. W. Ho. 2006. Effects of Lactobacillus feed supplementation on cholesterol, fat content and fatty acid composition of the liver, muscle, and carcass of broiler chickens. Anim. Res. 55:77-82. https://doi.org/10.1051/animres:2005043
- Kang, N. H., W. K. Lee, B. R. Yi, M. A. Park, H. R. Lee, S. K. Park, K. A. Hwang, H. K. Park, and K. C. Choi. 2012. Modulation of lipid metabolism by mixtures of protamine and chitooligosaccharide through pancreatic lipase inhibitory activity in a rat model. Lab. Anim. Res. 28:31-38. https://doi.org/10.5625/lar.2012.28.1.31
- Kassim, H. and S. Suwanpradit. 1996a. The effect of energy levels on the carcass composition of the broilers. Asian J. Anim. Sci. 9:331-335. https://doi.org/10.5713/ajas.1996.331
- Kassim, H. and S. Suwanpradit. 1996b. The effects of dietary protein levels on the carcass composition of starter and grower broilers. Asian Australas. J. Anim. Sci. 9:261-266. https://doi.org/10.5713/ajas.1996.261
- Khan, R. U., S. Naz, Z. Nikousefat, V. Tufarelli, and V. Laudadio. 2012. Thymus vulgari: alternative to antibiotics in poultry feed. World's Poult. Sci. J. 68:401-408. https://doi.org/10.1017/S0043933912000517
- Kidd, M. T., C. D. McDaniel, E. D. Peebles, S. J. Barber, A. Corzo, S. L. Branton, and J. C. Woodworth. 2005. Breeder hen dietary L-carnitine affects progeny carcase traits. Br. Poult. Sci. 46:97-103. https://doi.org/10.1080/00071660400024027
- Klimis-Taventzis, D. J., P. M. Kris-Etherton, and R. M. Jr. Leach. 1983. The effect of dietary manganese deficiency on cholesterol and lipid metabolism in the estrogen-treated chicken and the laying hen. J. Nutr. 113:320-327.
- Kobayashi, S. and H. Itoh. 1991. Effect of dietary chitin and chitosan on growth and abdominal fat deposition in chicks. J. Poult. Sci. 28:88-94. https://doi.org/10.2141/jpsa.28.88
- Kobayashi, S., Y. Terashima, and H. Itoh. 2002. Effect of dietary chitosan on fat deposition and lipase activity in digesta in broiler chickens. Br. Poult. Sci. 43:270-273. https://doi.org/10.1080/00071660120121490
- Li, S., L. Lin, H. Shoufeng, W. Yanping , Z. Liyang, L. Songbai, L. Bin, L. Kui, and X. Luo. 2011. Dietary manganese modulates expression of the manganese-containing superoxide dismutase gene in chickens. J. Nutr. 141:189-194. https://doi.org/10.3945/jn.110.126680
- Lu, L., C. Ji, X. G. Luo, B. Liu, and S. X. Yu. 2006. The effect of supplemental manganese in broiler diets on abdominal fat deposition and meat quality. Anim. Feed Sci. Technol. 129:49-59. https://doi.org/10.1016/j.anifeedsci.2005.12.005
- Lu, L., X. G. Luo, C. Ji, B. Liu, and S. X. Yu. 2007. Effect of manganese supplementation and source on carcass traits, meat quality, and lipid oxidation in broilers. J. Anim. Sci. 85:812-822.
- Moran, E. T. and S. F. Bilgili. 1990. Processing losses, carcass quality and meat yields of broiler chickens receiving diets marginally deficient to adequate in lysine prior to marketing. Poult. Sci. 69:702-710. https://doi.org/10.3382/ps.0690702
- Nasr, J. and F. Kheiri. 2011. Effect of different lysine levels on Arian broiler performances. Ital. J. Anim. Sci. 10:170-174.
- Newman, R. E., W. L. Bryden, E. Fleck, J. R. Ashes, W. A. Buttemer, L. H. Storlien, and J. A. Downing. 2002. Dietary n-3 and n-6 fatty acids alter avian metabolism: metabolism and abdominal fat deposition. Br. J. Nutr. 88:11-18. https://doi.org/10.1079/BJN2002580
- Niu, Z. Y., F. Z. Liu, Y. N. Min, and W. C. Li. 2010. Effects of dietary dihydropyridine supplementation on growth performance and lipid metabolism of broiler chickens. Czech J. Anim. Sci. 55:116-122.
- Niu, Z. Y., Y. N. Min, H. Y. Wang, J. Zhang, W. C. Li, L. Li, and F. Z. Liu. 2011. Effects of dietary dihydropyridine on laying performance and lipid metabolism of broiler breeder hens. S. Afr. J. Anim. Sci. 41:331-336.
- NRC (National Research Council). 1994. Nutrient Requirements for Poultry. 9th Edn. National Academy Press, Washington DC, USA.
- Plavnik, I. and S. Hurwitz. 1985. The performance of broiler chicks during and following a severe feed restriction at an early age. Poult. Sci. 64:348-355. https://doi.org/10.3382/ps.0640348
- Plavnik, I. and S. Hurwitz. 1991. Response of broiler chickens and turkey poults to food restriction of varied severity during early life. Br. Poult. Sci. 32:343-352. https://doi.org/10.1080/00071669108417359
- Qureshi, A. A., Z. Z. Din, N. Abuirmeleh, W. C. Burger, Y. Ahmad, and C. E. Elson. 1983. Suppression of cholesterogenesis and reduction of LDL cholesterol by dietary ginseng and its fractions in chicken liver. Atherosclerosis 48:81-94. https://doi.org/10.1016/0021-9150(83)90019-9
- Rabie, M. H. and M. Szilagyi. 1998. Effects of L-carnitine supplementation of diets differing in energy levels on performance, abdominal fat content, and yield and composition of edible meat of broilers. Br. J. Nutr. 80:391-400. https://doi.org/10.1079/096582198388256
- Rezaei, M. and H. Hajati. 2010. Effect of diet dilution at early age on performance, carcass characteristics and blood parameters of broiler chicks. Ital. J. Anim. Sci. 9:93-100.
- Richards, M. P., S. M. Poch, C. N. Coon, R. W. Rosebrough, C. M. Ashwellm, and J. P. McMurtry. 2003. Feed restriction significantly alters lipogenic gene expression in broiler breeder chickens. J. Nutr. 133:707-715.
- Rosebrough, R. W., B. A. Russell, and M. P. Richards. 2008. Short term changes in expression of lipogenic genes in broilers (Gallus gallus). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 149:389-395. https://doi.org/10.1016/j.cbpa.2008.01.035
- Rosebrough, R. W., B. A. Russell, and M. P. Richards. 2011. Further studies on short-term adaptations in the expression of lipogenic genes in broilers. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 159:1-6. https://doi.org/10.1016/j.cbpa.2010.10.032
- Rosebrough, R. W., S. M. Poch, B. A. Russell, and M. P. Richards. 2002. Dietary protein regulates in vitro lipogenesis and lipogenic gene expression in broilers. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 132:423-431. https://doi.org/10.1016/S1095-6433(02)00084-3
-
Royan, M., G. Y. Meng, F. Othman, A. Q. Sazili, and B. Navidshad. 2011. Effects of conjugated linoleic acid, fish oil and soybean oil on PPARs (\alpha &
$\gamma$ ) mRNA expression in broiler chickens and their relation to body fat deposits. Int. J. Mol. Sci. 12: 8581-8595. https://doi.org/10.3390/ijms12128581 - Saleh, A. A., Y. Z. Eid, T. A. Ebeid, A. Ohtsuka, K. Hioki, M. Yamamoto, and K. Hayashi. 2012. The modification of the muscle fatty acid profile by dietary supplementation with Aspergillus awamori in broiler chickens. Br. J. Nutr. 108:1596-1602. https://doi.org/10.1017/S0007114511007069
- Saleh, A. A., Z. Eid, and K. Hayashi. 2011. Effects of feeding Aspergillus awamori and Aspergillus niger on growth performance and meat quality in broiler chickens. J. Poult. Sci. 48: 201-206. https://doi.org/10.2141/jpsa.011019
- Sands, J. S. and M. O. Smith. 1999. Broilers in heat stress conditions: Effects of dietary manganese proteinate or chromium picolinate supplementation. J. Appl. Poult. Res. 8: 280-287. https://doi.org/10.1093/japr/8.3.280
- Santoso, U. 2001. Effects of early feed restriction on growth, fat accumulation and meat composition in unsexed broiler chickens. Asian Australas. J. Anim. Sci. 14:1585-1591. https://doi.org/10.5713/ajas.2001.1585
- Santoso, U., K. Tanaka, and S. Ohtania. 1995. Effect of dried Bacillus subtilis culture on growth, body composition and hepatic lipogenic enzyme activity in female broiler chicks. Br. J. Nutr. 74:523-529. https://doi.org/10.1079/BJN19950155
- Santoso, U., K. Tanaka, S. Ohtani, and B. S. Youn. 1993. Effects of early feed restriction on growth performance and body composition in broilers. Asian Australas. J. Anim. Sci. 6:401-410. https://doi.org/10.5713/ajas.1993.401
- Sanz, M., A. Flores, and C. J. Lopez-Bote. 2000a. The metabolic use of energy from dietary fat in broilers is affected by fatty acid saturation. Br. Poult. Sci. 41:61-68.
- Sanz, M., A. Flores, P. Perez de Ayala, and C. J. Lopez-Bote. 1999. Higher lipid accumulation in broilers fed on saturated fats than in those fed on unsaturated fats. Br. Poult. Sci. 40:95-101. https://doi.org/10.1080/00071669987908
-
Sanz, M., C. J. Lopez-Bote, D. Menoyo, and J. M. Bautista. 2000b. Abdominal fat deposition and fatty acid synthesis are lower and
$\beta$ -oxidation is higher in broiler chickens fed diets containing unsaturated rather than saturated fat. J. Nutr. 130: 3034-3037. - Sato, K., H. Abe, T. Kono, M. Yamazaki, K. Nakashima, T. Kamada, and Y. Akiba. 2009. Changes in peroxisome proliferator-activated receptor gamma gene expression of chicken abdominal adipose tissue with different age, sex and genotype. Anim. Sci. J. 80:322-327. https://doi.org/10.1111/j.1740-0929.2009.00639.x
-
Shen, Q. W., M. J. Zhu, J. Tong, J. Ren, and M. Du. 2007.
$Ca^{2+}$ /calmodulin-dependent protein kinase kinase is involved in AMP-activated protein kinase activation by alpha-lipoic acid in$C_2C_{12}$ myotubes. Am. J. Physiol. Cell Physiol. 293: C1395-C1403. https://doi.org/10.1152/ajpcell.00115.2007 - Simon, O., K. Manner, K. Schafer, A. Sagredos, and K. Eder. 2000. Effect of conjugated linoleic acid on protein-to-fed proportion, fatty acids and plasma lipids in broilers. Eur. J. Lipid Sci. Technol. 102:402-410. https://doi.org/10.1002/1438-9312(200006)102:6<402::AID-EJLT402>3.0.CO;2-T
- Simopoulos, A. P. 2000. Human requirement for N-3 polyunsaturated fatty acids. Poult. Sci. 79:961- 970. https://doi.org/10.1093/ps/79.7.961
- Su, S. Y., M. V. Dodson, X. B. Li, Q. F. Li, H. W. Wang, and Z. Xie. 2009. The effects of dietary betaine supplementation on fatty liver performance, serum parameters, histological changes, methylation status and the mRNA expression level of Spot14\alpha in Landes goose fatty liver. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 154:308-314. https://doi.org/10.1016/j.cbpa.2009.05.124
- Szymczyk, B., P. M. Pisulewski, W. Szczurek, and P. Hanczakowski. 2001. Effects of conjugated linoleic acid on growth performance, feed conversion efficiency, and subsequent carcass quality in broiler chickens. Br. J. Nutr. 85:465-473. https://doi.org/10.1079/BJN2000293
- Takahashi, K. and Y. Akiba. 1995. Effect of methionine supplementation on lipogenesis and lipolysis in broiler chickens. J. Poult. Sci. 32:99-106. https://doi.org/10.2141/jpsa.32.99
- Tan, B. J. and S. Ohtani. 2000. Effect of different early feed restriction regimens on performance, carcass composition and lipid metabolism in male ducks. Anim. Sci. J. 71:586-593.
- Tanaka, K., S. Ohyani, and K. Shigeno. 1983. Effect of increasing dietary energy on hepatic lipogenesis in growing chicks. II. Increasing energy by fat or protein supplementation. Poult. Sci. 62:452-458. https://doi.org/10.3382/ps.0620452
- Tesseraud, S., I. Bouvarel, A. Collin, E. Audouin, S.Crochet, I. Seiliez, and C. Leterrier. 2009. Daily variations in dietary lysine content alter the expression of genes related to proteolysis in chicken pectoralis major muscle. J. Nutr. 139: 38-43.
- Thomas, V. G., S. K. Mainguy, and J. P. Prevett. 1983. Predicting fat-content of geese from abdominal fat weight. J. Wildl. Manage. 47:1115-1119. https://doi.org/10.2307/3808172
- Virtanen, E. 1995. Piecing together the betaine puzzle. Feed Mix 3:12-17.
- Wang, S. Z., X. X. Hu, Z. P. Wang, X. C. Li, Q. G. Wang, Y. X. Wang, Z. Q. Tang, and H. Li. 2012. Quantitative trait loci associated with body weight and abdominal fat traits on chicken chromosomes 3, 5 and 7. Genet. Mol. Res. 11:956-965. https://doi.org/10.4238/2012.April.19.1
- Wang, Y. Z., Z. R. Xu, and J. Feng. 2004. The effect of betaine and DL-methionine on growth performance and carcass characteristics in meat ducks. Anim. Feed Sci. Technol. 116: 151-159. https://doi.org/10.1016/j.anifeedsci.2004.05.003
-
Wang, Y., Y. Mu, H. Li, N. Ding, Q. Wang, Y. Wang, S. Wang, and N. Wang. 2008. Peroxisome proliferator-activated receptor-
$\gamma$ gene: A key regulator of adipocyte differentiation in chickens. Poult. Sci. 87:226-232. https://doi.org/10.3382/ps.2007-00329 - Wang, Z. Y., S. R. Shi, Q. Y. Zhou, H. M. Yang, J. M. Zou, K. N. Zhang, and H. M. Han. 2010. Response of growing goslings to dietary methionine from 28 to 70 days of age. Br. Poult. Sci. 51:118-121. https://doi.org/10.1080/00071660903431406
- Wu, L., X. Guo, and Y. Fang. 2012. Effect of diet dilution ratio at early age on growth performance, carcass characteristics and hepatic lipogenesis of Pekin ducks. Braz. J. Poult. Sci. 14:43-49.
- Wu, L. Y., Y. J. Fang, and X. Y. Guo. 2011. Dietary Larginine supplementation beneficially regulates body fat deposition of meat-type ducks. Br. Poult. Sci. 52:221-226. https://doi.org/10.1080/00071668.2011.559452
- Xie, M., J. N. Zhao, S. S. Hou, and W. Huang. 2010. The apparent metabolizable energy requirement of White Pekin ducklings from hatch to 3 weeks of age. Anim. Feed Sci. Technol. 157: 95-98. https://doi.org/10.1016/j.anifeedsci.2010.01.011
- Xie, M., S. S. Hou, and W. Huang. 2006. Methionine requirements of male white Peking ducks from twenty-one to forty nine days of age. Poult. Sci. 85:743-746. https://doi.org/10.1093/ps/85.4.743
- Xing, J., L. Kang, and Y. Jiang. 2011. Effect of dietary betaine supplementation on lipogenesis gene expression and CpG methylation of lipoprotein lipase gene in broilers. Mol. Biol. Rep. 38:1975-1981. https://doi.org/10.1007/s11033-010-0319-4
- Xing, J., L. Kang, Y. Hu, Q. Xu, N. Zhang, and Y. Jiang. 2009. Effect of dietary betaine supplementation on mRNA expression and promoter CpG methylation of lipoprotein lipase gene in laying hens. J. Poult. Sci. 46:224-228. https://doi.org/10.2141/jpsa.46.224
-
Xiong, M., S. Li, Peng, Y. Feng, G. Yu, Q. Xin, and Y. Gong. 2010. Adipogenesis in ducks interfered by small interfering ribonucleic acids of peroxisome proliferator-activated receptor
$\gamma$ gene. Poult. Sci. 89:88-95. https://doi.org/10.3382/ps.2009-00289 - Xu, Z. R., M. Q. Wang, H. X. Mao, X. A. Zhan, and C. H. Hu. 2003. Effects of L-carnitine on growth performance, carcass composition, and metabolism of lipids in male broilers. Poult. Sci. 82:408-413. https://doi.org/10.1093/ps/82.3.408
- Yalcin, S., H. Ozkul, S. Ozkan, R. Gous, I. Yasa, and E. Babacanoglu. 2010. Effect of dietary protein regime on meat quality traits and carcase nutrient content of broilers from two commercial genotypes. Br. Poult. Sci. 51:621-628. https://doi.org/10.1080/00071668.2010.520302
- Yamamoto, M., F. Saleh, M. Tahir, A. Ohtsuka, and K. Hayashi. 2007. The effect of Koji-fed (fermented distillery byproduct) on the growth performance and nutrient metabolizability in broiler. J. Poult. Sci. 44:291-296. https://doi.org/10.2141/jpsa.44.291
- Yan, L., Q. W. Meng, J. H. Lee, J. P. Wang, and I. H. Kim. 2011a. Effect of dietary wildginseng adventitious root meal on growth performance, blood profiles, relative organ weight and meat quality in broiler chickens. Asian Australas. J. Anim. Sci. 24: 258-263. https://doi.org/10.5713/ajas.2011.10222
- Yan, L., Q. W. Meng, X. Ao, J. P. Wang, H. D. Jang, and I. H. Kim. 2011b. Evaluation of dietary wild-ginseng adventitious root meal on egg production, egg quality, hematological profiles and egg yolk fatty acid composition in laying hens. Livest. Sci. 140:201-205. https://doi.org/10.1016/j.livsci.2011.03.033
- Yang, X., J. Zhuang, K. Rao, X. Li, and R. Zhao. 2010. Effect of early feed restriction on hepatic lipid metabolism and expression of lipogenic genes in broiler chickens. Res. Vet. Sci. 89:438-444. https://doi.org/10.1016/j.rvsc.2010.04.003
- Yao, J. H., S. Q. Li, L. L. Zhong, S. X. Huang, W. J. Zhang, and H. B. Xi. 2006. The relative effectiveness of liquid methionine hydroxy analogue compared to DL-methionine in broilers. Asian Australas. J. Anim. Sci. 19:1026-1032. https://doi.org/10.5713/ajas.2006.1026
- Zhan, X. A., J. X. Li, Z. R. Xu, and R. Q. Zhao. 2006. Effects of methionine and betaine supplementation on growth performance, carcase composition and metabolism of lipids in male broilers. Br. Poult. Sci. 47:576-580. https://doi.org/10.1080/00071660600963438
- Zhang, G. M., J. Wen, J. L. Chen, G. P. Zhao, M. Q. Zheng, and W. J. Li. 2007. Effect of conjugated linoleic acid on growth performances, carcass composition, plasma lipoprotein lipase activity and meat traits of chicken. Br. Poult. Sci. 48:217-223. https://doi.org/10.1080/00071660701255841
- Zhang, X., B. Wang, F. Long, L. Wang, and Z. Yang. 2009a. The effect of dietary conjugated linoleic acid (CLA) on fatty acid composition and key enzymes of fatty acids oxidation in liver and muscle of geese. Turk. J. Vet. Anim. Sci. 33:215-222.
- Zhang, Y., K. Hongtrakul, Q. G. Ma, L. T. Liu, and X. X. Hu. 2009b. Effects of dietary alpha-lipoic acid on anti-oxidative ability and meat quality in Arbor Acres broilers. Asian Australas. J. Anim. Sci. 22:1195-1201. https://doi.org/10.5713/ajas.2009.90101
- Zhong, C., H. S. Nakaue, C. Y. Hu, and L. W. Mirosh. 1995. Effect of full food and early food restriction on broiler performance, abdominal fat level, cellularity and fat metabolism in broiler chickens. Poult. Sci. 74:1636-1643. https://doi.org/10.3382/ps.0741636
- Zhou, H., N. Deeb, C. M. Evock-Clover, C. M. Ashwel, and S. J. Lamont. 2006. Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic traits in the chicken. II. Body composition. Poult. Sci. 85:1712-1721. https://doi.org/10.1093/ps/85.10.1712
- Zhou, J. 2008. Effect of dietary conjugated linoleic acid (CLA) on abdominal fat deposition in yellow-feather broiler chickens and its possible mechanism. Asian Australas. J. Anim. Sci. 21:1760-1765. https://doi.org/10.5713/ajas.2008.80165
- Zhou, T. X., Y. J. Chen, J. S. Yoo, Y. Huang, J. H. Lee, H. D. Jang, S. O. Shin, H. J. Kim, J. H. Cho, and I. H. Kim. 2009. Effects of chitooligosaccharide supplementation on performance, blood characteristics, relative organ weight, and meat quality in broiler chickens. Poult. Sci. 88:593-600. https://doi.org/10.3382/ps.2008-00285
- Zou, X. T., Z. R. Xu, J. L. Zhu, X. J. Fang, and J. F. Jiang. 2007. Effects of dietary dihydropyridine supplementation on laying performance and fat metabolism of laying hens. Asian Australas. J. Anim. Sci. 20:1606-1611. https://doi.org/10.5713/ajas.2007.1606
Cited by
- Effect of Cottonseed Meal Fermented with Yeast on the Lipid-related Gene Expression in Broiler Chickens vol.17, pp.spe, 2015, https://doi.org/10.1590/1516-635XSPECIALISSUENutrition-PoultryFeedingAdditives057-064
- Single injection of clenbuterol into newly hatched chicks decreases abdominal fat pad weight in growing broiler chickens vol.87, pp.10, 2015, https://doi.org/10.1111/asj.12541
- The potential of replacing soyabean oil cake with macadamia oil cake in broiler diets vol.48, pp.6, 2016, https://doi.org/10.1007/s11250-016-1057-y
- Performances and haematological profile of broilers fed fermented dried cassava (Manihot esculenta Crantz) vol.48, pp.7, 2016, https://doi.org/10.1007/s11250-016-1098-2
- Effects of dietary methionine on performance, egg quality and glutathione redox system in egg-laying ducks vol.57, pp.6, 2016, https://doi.org/10.1080/00071668.2016.1222603
- Physiological and pathophysiological aspects of peroxisome proliferator-activated receptor regulation by fatty acids in poultry species vol.72, pp.03, 2016, https://doi.org/10.1017/S0043933916000490
- Lipid Formation and mRNA Expression of Key Adipogenic Genes in the Liver of Athens Canadian Random Breed and COBB Chicken Breeds During the Embryogenic Period vol.16, pp.10, 2017, https://doi.org/10.3923/ijps.2017.374.380
- Comparison of Fatness and Meat Quality of Kampung Chickens, Arabic Chickens and Laying Type Cockerels at Different Slaughtering Ages vol.16, pp.3, 2017, https://doi.org/10.3923/ijps.2017.105.111
- COMPLEXO ENZIMÁTICO E FARELO DE ARROZ INTEGRAL SOBRE O DESEMPENHO PRODUTIVO E QUALIDADE DOS OVOS DE POEDEIRAS EM SEGUNDO CICLO DE PRODUÇÃO vol.18, pp.0, 2017, https://doi.org/10.1590/1089-6891v18e-18117
- Preventing subclinical necrotic enteritis through Lactobacillus johnsonii BS15 by ameliorating lipid metabolism and intestinal microflora in broiler chickens vol.7, pp.1, 2017, https://doi.org/10.1186/s13568-017-0439-5
- In ovo injection of betaine alleviates corticosterone-induced fatty liver in chickens through epigenetic modifications vol.7, pp.2045-2322, 2017, https://doi.org/10.1038/srep40251
- Factors affecting adipose tissue development in chickens: A review vol.96, pp.10, 2017, https://doi.org/10.3382/ps/pex184
- Effects of dietary lysine supplementation on performance, egg quality, and development of reproductive system in egg-laying ducks pp.0974-1844, 2017, https://doi.org/10.1080/09712119.2017.1308868
- Metabolomics reveals the mechanism of (−)-hydroxycitric acid promotion of protein synthesis and inhibition of fatty acid synthesis in broiler chickens pp.1751-732X, 2017, https://doi.org/10.1017/S175173111700221X
- The effect of supplementation of multistrain probiotic preparation in combination with vitamins and minerals to the basal diet on the growth performance, carcass traits, and physiological response of broilers vol.11, pp.2, 2018, https://doi.org/10.14202/vetworld.2018.240-247
- Effects of dietary methionine on productivity, reproductive performance, antioxidant capacity, ovalbumin and antioxidant-related gene expression in laying duck breeders vol.119, pp.02, 2018, https://doi.org/10.1017/S0007114517003397
- Nutritional requirements of meat-type and egg-type ducks: what do we know? vol.9, pp.1, 2018, https://doi.org/10.1186/s40104-017-0217-x
- Alternative Transcription of Peroxisome Proliferator-Activated Receptor Gamma in the Liver Is Associated with Fatness of Chickens vol.20, pp.3, 2018, https://doi.org/10.1590/1806-9061-2017-0661
- and their correlation with fat deposition in Yunnan’s top six famous chicken breeds vol.59, pp.5, 2018, https://doi.org/10.1080/00071668.2018.1490494
- Integration of genome wide association studies and whole genome sequencing provides novel insights into fat deposition in chicken vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-34364-0
- Evaluation of hepatic lipogenesis and antioxidant status of broiler chickens fed mountain celery vol.14, pp.1, 2018, https://doi.org/10.1186/s12917-018-1561-6
- Genomic Insights Into the Multiple Factors Controlling Abdominal Fat Deposition in a Chicken Model vol.9, pp.1664-8021, 2018, https://doi.org/10.3389/fgene.2018.00262
- Effect of probiotic and vinegar on growth performance, meat yields, immune responses, and small intestine morphology of broiler chickens vol.17, pp.3, 2018, https://doi.org/10.1080/1828051X.2018.1424570
- Hematological parameters and selected intestinal microbiota populations in the Indonesian indigenous crossbred chickens fed basal diet supplemented with multi-strain probiotic preparation in combination with vitamins and minerals vol.11, pp.6, 2018, https://doi.org/10.14202/vetworld.2018.874-882
- Transcriptional analysis of liver from chickens with fast (meat bird), moderate (F1 layer x meat bird cross) and low (layer bird) growth potential vol.19, pp.1, 2018, https://doi.org/10.1186/s12864-018-4723-9
- Effects of diets with different energy and bile acids levels on growth performance and lipid metabolism in broilers vol.98, pp.2, 2019, https://doi.org/10.3382/ps/pey434
- Assessment of Meat Quality and Shelf Life from Broilers Fed with Different Sources and Concentrations of Methionine vol.2019, pp.1745-4557, 2019, https://doi.org/10.1155/2019/6182580
- Active transport of glucose across the jejunal epithelium decreases with age in broiler chickens pp.1525-3171, 2019, https://doi.org/10.3382/ps/pez002
- Effects of dietary probiotic supplementation onLXRαandCYP7α1gene expression, liver enzyme activities and fat metabolism in ducks vol.56, pp.2, 2014, https://doi.org/10.1080/00071668.2014.1000821
- Effect of Nonsaponifiable Fraction of Avocado Oil on Body Weight, Body Fat and Blood Lipid Profile of Broiler Chickens vol.9, pp.3, 2014, https://doi.org/10.3923/ajpsaj.2015.144.154
- Effects of Dietary Manganese Supplementation on Laying Performance, Egg Quality and Antioxidant Status in Laying Ducks vol.11, pp.9, 2014, https://doi.org/10.3923/ajava.2016.570.575
- 닭의 지방대사와 지방간 vol.45, pp.2, 2014, https://doi.org/10.5536/kjps.2018.45.2.109
- Growth Performance, Carcass Traits and Breast Meat Fatty Acids Profile of Helmeted Guinea Fowls (Numida meleagris) Fed Increasing Level of Linseed (Linum usitatissimum) and Pumpkin Seed (Cucurbita mos vol.20, pp.4, 2014, https://doi.org/10.1590/1806-9061-2018-0760
- Effects of Dietary Supplementation with Red Algae Powder (Chondrus crispus) on Growth Performance, Carcass Traits, Lymphoid Organ Weights and Intestinal pH in Broilers vol.21, pp.4, 2014, https://doi.org/10.1590/1806-9061-2019-1015
- Lipid Sources in Diets for Hy-Line White Laying: Performance, Biometrics of Digestive Organs, and Bone Characteristics vol.21, pp.3, 2019, https://doi.org/10.1590/1806-9061-2019-1032
- Harmful Effects and Control Strategies of Aflatoxin B 1 Produced by Aspergillus flavus and Aspergillus parasiticus Strains on Poultry: Review vol.11, pp.3, 2014, https://doi.org/10.3390/toxins11030176
- Whole-Life or Fattening Period Only Broiler Feeding Strategies Achieve Similar Levels of Omega-3 Fatty Acid Enrichment Using the DHA-Rich Protist, Aurantiochytrium limacinum vol.9, pp.6, 2014, https://doi.org/10.3390/ani9060327
- Omega-3 and Omega-6 Fatty Acids in Poultry Nutrition: Effect on Production Performance and Health vol.9, pp.8, 2019, https://doi.org/10.3390/ani9080573
- Implications of Gene Inheritance Patterns on the Heterosis of Abdominal Fat Deposition in Chickens vol.10, pp.10, 2019, https://doi.org/10.3390/genes10100824
- Effects of chitin and chitosan from cricket and shrimp on growth and carcass performance of broiler chickens vol.51, pp.8, 2019, https://doi.org/10.1007/s11250-019-01936-9
- Dynamics of transcriptome changes during subcutaneous preadipocyte differentiation in ducks vol.20, pp.1, 2019, https://doi.org/10.1186/s12864-019-6055-9
- Folic acid perfusion administration reduced abdominal fat deposition in starter Arbor Acres broilers vol.98, pp.12, 2014, https://doi.org/10.3382/ps/pez413
- Dietary supplementation with L-arginine and combinations of different oil sources beneficially regulates body fat deposition, lipogenic gene expression, growth performance and carcass yield in broiler vol.60, pp.11, 2014, https://doi.org/10.1071/an19205
- Effect of Soybean Meal Substitution by Raw Chickpea Seeds on Thermal Properties and Fatty Acid Composition of Subcutaneous Fat Tissue of Broiler Chickens vol.10, pp.3, 2014, https://doi.org/10.3390/ani10030533
- Association of residual feed intake with growth performance, carcass traits, meat quality, and blood variables in native chickens vol.98, pp.7, 2014, https://doi.org/10.1093/jas/skaa121
- Impact of feeding varying grower digestible lysine and energy levels to female Cobb MV × Cobb 500 broilers from 14 to 28 D on 42 D growth performance, processing, and economic return vol.29, pp.3, 2014, https://doi.org/10.1016/j.japr.2020.03.006
- Effect of Sequential Feeding with Variations in Energy and Protein Levels on Performances of Sasso Broilers Under Hot and Humid Climate vol.19, pp.9, 2014, https://doi.org/10.3923/ijps.2020.416.423
- Secondary Functions of Arginine and Sulfur Amino Acids in Poultry Health: Review vol.10, pp.11, 2014, https://doi.org/10.3390/ani10112106
- Effects of Dietary Fiber on Growth Performance, Fat Deposition, Fat Metabolism, and Expression of Lipoprotein Lipase Mrna in Two Breeds of Geese vol.23, pp.3, 2014, https://doi.org/10.1590/1806-9061-2020-1287
- Impact of Dietary Betaine and Metabolizable Energy Levels on Profiles of Proteins and Lipids, Bioenergetics, Peroxidation and Quality of Meat in Japanese Quail vol.11, pp.1, 2014, https://doi.org/10.3390/ani11010117
- Effect of diet nutrients density on performance and egg quality of laying hens during the post-peak production phase of the first laying cycle under subtropical climate vol.20, pp.1, 2014, https://doi.org/10.1080/1828051x.2021.1900753
- Dose titration of plantain herb (Plantago lanceolata L.) supplementation on growth performance, serum antioxidants status, liver enzymatic activity and meat quality in broiler chickens vol.20, pp.1, 2021, https://doi.org/10.1080/1828051x.2021.1952114
- Influence of liquid probiotic inclusion as feed additives on lipid profiles and meat cholesterol content of commercial broiler chickens vol.667, pp.1, 2014, https://doi.org/10.1088/1755-1315/667/1/012075
- Effects of Supplemental Feed with Different Levels of Dietary Metabolizable Energy on Growth Performance and Carcass Characteristics of Grazing Naturalized Swan Geese (Anser cygnoides) vol.11, pp.3, 2014, https://doi.org/10.3390/ani11030711
- Effects of feeding ISA brown and Shaver white layer breeders with sources of n-3 fatty acids on hatching egg profiles, apparent embryonic uptake of egg components, and body composition of day-old chic vol.101, pp.1, 2014, https://doi.org/10.1139/cjas-2020-0026
- Hesperidin and Naringin Improve Broiler Meat Fatty Acid Profile and Modulate the Expression of Genes Involved in Fatty Acid β-oxidation and Antioxidant Defense in a Dose Dependent Manner vol.10, pp.4, 2021, https://doi.org/10.3390/foods10040739
- Giblets and abdominal fat of pomegranate seed oil fed chickens as a source of bioactive fatty acids vol.105, pp.3, 2014, https://doi.org/10.1111/jpn.13464
- Effect of black soldier fly (Hermetia illucens) meals in the diet on the growth performance and carcass composition in broilers vol.7, pp.3, 2021, https://doi.org/10.3920/jiff2019.0050
- Interaction of Soybean Varieties and Heat Treatments and Its Effect on Growth Performance and Nutrient Digestibility in Broiler Chickens vol.11, pp.9, 2014, https://doi.org/10.3390/ani11092668
- Effect of dietary replacement of soybean meal with linseed meal on feed intake, growth performance and carcass quality of broilers vol.7, pp.11, 2014, https://doi.org/10.1016/j.heliyon.2021.e08297
- The genetic basis and robustness of naked neck mutation in chicken vol.53, pp.1, 2014, https://doi.org/10.1007/s11250-020-02505-1