Effect of Propofol Preconditioning on Hypoxic-Cultured Human Osteoblast

  • Yoon, Ji Uk (Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University) ;
  • Shin, Sang Wook (Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University) ;
  • Park, Bong Soo (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Kim, Yong Ho (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Woo, Mi Na (Department of Dental Anesthesia and Pain Medicine, Pusan National University Dental Hospital) ;
  • Yoon, Ji Young (Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University) ;
  • Kim, Cheul Hong (Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University)
  • Received : 2014.06.24
  • Accepted : 2014.07.04
  • Published : 2014.06.30

Abstract

Background: Angiogenesis has been recognized an essential precondition for osteogenesis. Because reduction and disruption of the blood supply to tissue cause tissue hypoxia, pathological bone loss affected by hypoxia often can occur in various clinical conditions. The effects of propofol on the process of osteogenesis have received little direct attention. Therefore, we investigated the effect of propofol on the growth and function of osteoblasts under hypoxic condition. Methods: After propofol (3, 30, $300{\mu}M$) preconditioning for 2 hours, hFOB 1.19 human osteoblast cells were cultured under 1 % oxygen tension for 48 hours. Using real time PCR and western blot analysis, we analyzed the expression of, BMP-2, TGF-${\beta}1$, type I collagen, osteocalcin, HIF-1s and Akt. Cell viability was also determined by MTT assay. Results: Propofol preconditioning on hypoxic-cultured osteoblast promoted the expressions of BMP-2, TGF-${\beta}1$, type I collagen and osteocalcin and induced hypoxia-mediated HIF-1 activation and the expression of Akt protein. Propofol with $300{\mu}M$ significant decreased cell viability compared to control. Conclusions: Clinically relevant concentrations of propofol are not cytotoxic to hypoxic osteoblasts in vitro. Propofol preconditioning on hypoxic-cultured osteoblast stimulates proliferation and differentiation of osteoblast through induced expression of BMP-2, TGF-${\beta}1$, type I collagen and osteocalcin. Propofol might promote angiogenesis and bone regeneration under hypoxic condition.

Keywords

References

  1. Ferguson C, Alpern E, Miclau T, Helms JA: Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev 1999; 87: 57-66. https://doi.org/10.1016/S0925-4773(99)00142-2
  2. Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA: Fracture healing as a post-natal developmental process: Molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 2003; 88: 873-84. https://doi.org/10.1002/jcb.10435
  3. Carano RA, Filvaroff EH: Angiogenesis and bone repair. Drug Discov Today 2003; 8: 980-9. https://doi.org/10.1016/S1359-6446(03)02866-6
  4. Steinbrech DS, Mehrara BJ, Saadeh PB, Chin G, Dudziak ME, Gerrets RP, et al: Hypoxia regulates VEGF expression and cellular proliferation by osteoblasts in vitro. Plast Reconstr Surg 1999; 104: 738-47. https://doi.org/10.1097/00006534-199909010-00019
  5. Steinbrech DS, Mehrara BJ, Saadeh PB, Greenwald JA, Spector JA, Gittes GK, et al: Hypoxia increases insulinlike growth factor gene expression in rat osteoblasts. Ann Plast Surg 2000; 44: 529-34; discussion 534-5. https://doi.org/10.1097/00000637-200044050-00012
  6. Tseng WP, Yang SN, Lai CH, Tang CH: Hypoxia induces BMP-2 expression via ILK, akt, mTOR, and HIF-1 pathways in osteoblasts. J Cell Physiol 2010; 223: 810-8.
  7. Semenza GL: Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 1999; 15: 551-78. https://doi.org/10.1146/annurev.cellbio.15.1.551
  8. Maxwell PH: Oxygen homeostasis and cancer: Insights from a rare disease. Clin Med 2002; 2: 356-62. https://doi.org/10.7861/clinmedicine.2-4-356
  9. D'Ippolito G, Diabira S, Howard GA, Roos BA, Schiller PC: Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone 2006; 39: 513-22. https://doi.org/10.1016/j.bone.2006.02.061
  10. Utting JC, Robins SP, Brandao-Burch A, Orriss IR, Behar J, Arnett TR: Hypoxia inhibits the growth, differentiation and bone-forming capacity of rat osteoblasts. Exp Cell Res 2006; 312: 1693-702. https://doi.org/10.1016/j.yexcr.2006.02.007
  11. Lee CM, Genetos DC, You Z, Yellowley CE: Hypoxia regulates PGE (2) release and EP1 receptor expression in osteoblastic cells. J Cell Physiol 2007; 212: 182-8. https://doi.org/10.1002/jcp.21017
  12. Park JH, Park BH, Kim HK, Park TS, Baek HS: Hypoxia decreases Runx2/Cbfa1 expression in human osteoblast-like cells. Mol Cell Endocrinol 2002; 192: 197-203. https://doi.org/10.1016/S0303-7207(02)00036-9
  13. Schipani E, Ryan HE, Didrickson S, Kobayashi T, Knight M, Johnson RS: Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. Genes Dev 2001; 15: 2865-76.
  14. He XY, Shi XY, Yuan HB, Xu HT, Li YK, Zou Z: Propofol attenuates hypoxia-induced apoptosis in alveolar epithelial type II cells through down-regulating hypoxia-inducible factor-1alpha. Injury 2012; 43: 279-83. https://doi.org/10.1016/j.injury.2011.05.037
  15. Hsing CH, Chou W, Wang JJ, Chen HW, Yeh CH: Propofol increases bone morphogenetic protein-7 and decreases oxidative stress in sepsis-induced acute kidney injury. Nephrol Dial Transplant 2011; 26: 1162-72. https://doi.org/10.1093/ndt/gfq572
  16. Noda M, Camilliere JJ: In vivo stimulation of bone formation by transforming growth factor-beta. Endocrinology 1989; 124: 2991-4. https://doi.org/10.1210/endo-124-6-2991
  17. Harris SE, Bonewald LF, Harris MA, Sabatini M, Dallas S, Feng JQ, et al: Effects of transforming growth factor beta on bone nodule formation and expression of bone morphogenetic protein 2, osteocalcin, osteopontin, alkaline phosphatase, and type I collagen mRNA in long-term cultures of fetal rat calvarial osteoblasts. J Bone Miner Res 1994; 9: 855-63.
  18. Wrana JL, Maeno M, Hawrylyshyn B, Yao KL, Domenicucci C, Sodek J: Differential effects of transforming growth factor-beta on the synthesis of extracellular matrix proteins by normal fetal rat calvarial bone cell populations. J Cell Biol 1988; 106: 915-24. https://doi.org/10.1083/jcb.106.3.915
  19. Jagodzinski M, Drescher M, Zeichen J, Hankemeier S, Krettek C, Bosch U, et al: Effects of cyclic longitudinal mechanical strain and dexamethasone on osteogenic differentiation of human bone marrow stromal cells. Eur Cell Mater 2004; 7: 35-41; discussion 41. https://doi.org/10.22203/eCM.v007a04
  20. Pavlin D, Zadro R, Gluhak-Heinrich J: Temporal pattern of stimulation of osteoblast-associated genes during mechanically-induced osteogenesis in vivo: Early responses of osteocalcin and type I collagen. Connect Tissue Res 2001; 42: 135-48. https://doi.org/10.3109/03008200109014255
  21. Ryoo HM, Hoffmann HM, Beumer T, Frenkel B, Towler DA, Stein GS, et al: Stage-specific expression of dlx-5 during osteoblast differentiation: Involvement in regulation of osteocalcin gene expression. Mol Endocrinol 1997; 11: 1681-94. https://doi.org/10.1210/mend.11.11.0011
  22. Chen D, Zhao M, Mundy GR: Bone morphogenetic proteins. Growth Factors 2004; 22: 233-41. https://doi.org/10.1080/08977190412331279890
  23. Li X, Cao X: BMP signaling and skeletogenesis. Ann N Y Acad Sci 2006; 1068: 26-40. https://doi.org/10.1196/annals.1346.006
  24. Ghosh-Choudhury N, Abboud SL, Nishimura R, Celeste A, Mahimainathan L, Choudhury GG: Requirement of BMP-2-induced phosphatidylinositol 3-kinase and akt serine/threonine kinase in osteoblast differentiation and smad-dependent BMP-2 gene transcription. J Biol Chem 2002; 277: 33361-8. https://doi.org/10.1074/jbc.M205053200
  25. Katz S, Ayala V, Santillan G, Boland R: Activation of the PI3K/Akt signaling pathway through P2Y receptors by extracellular ATP is involved in osteoblastic cell proliferation. Arch Biochem Biophys 2011; 513: 144-52. https://doi.org/10.1016/j.abb.2011.06.013
  26. Kawamura N, Kugimiya F, Oshima Y, Ohba S, Ikeda T, Saito T, et al: Akt1 in osteoblasts and osteoclasts controls bone remodeling. PLoS One 2007; 2: e1058. https://doi.org/10.1371/journal.pone.0001058
  27. Wang Y, Wan C, Deng L, Liu X, Cao X, Gilbert SR, et al: The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest 2007; 117: 1616-26. https://doi.org/10.1172/JCI31581
  28. Sharp FR, Bernaudin M: HIF1 and oxygen sensing in the brain. Nat Rev Neurosci 2004; 5: 437-48. https://doi.org/10.1038/nrn1408
  29. Hwang JM, Weng YJ, Lin JA, Bau DT, Ko FY, Tsai FJ, et al: Hypoxia-induced compensatory effect as related to shh and HIF-1alpha in ischemia embryo rat heart. Mol Cell Biochem 2008; 311: 179-87. https://doi.org/10.1007/s11010-008-9708-6
  30. Jiang BH, Jiang G, Zheng JZ, Lu Z, Hunter T, Vogt PK: Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ 2001; 12: 363-9.
  31. Fukuda R, Hirota K, Fan F, Jung YD, Ellis LM, Semenza GL: Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem 2002; 277: 38205-11. https://doi.org/10.1074/jbc.M203781200
  32. Xia Z, Huang Z, Ansley DM: Large-dose propofol during cardiopulmonary bypass decreases biochemical markers of myocardial injury in coronary surgery patients: A comparison with isoflurane. Anesth Analg 2006; 103: 527-32. https://doi.org/10.1213/01.ane.0000230612.29452.a6
  33. De Hert SG, Cromheecke S, ten Broecke PW, Mertens E, De Blier IG, Stockman BA, et al: Effects of propofol, desflurane, and sevoflurane on recovery of myocardial function after coronary surgery in elderly high-risk patients. Anesthesiology 2003; 99: 314-23. https://doi.org/10.1097/00000542-200308000-00013
  34. Bovill JG: Intravenous anesthesia for the patient with left ventricular dysfunction. Semin Cardiothorac Vasc Anesth 2006; 10: 43-8. https://doi.org/10.1177/108925320601000108
  35. Jin YC, Kim W, Ha YM, Shin IW, Sohn JT, Kim HJ, et al: Propofol limits rat myocardial ischemia and reperfusion injury with an associated reduction in apoptotic cell death in vivo. Vascul Pharmacol 2009; 50: 71-7. https://doi.org/10.1016/j.vph.2008.10.002
  36. Liu KX, Chen SQ, Huang WQ, Li YS, Irwin MG, Xia Z: Propofol pretreatment reduces ceramide production and attenuates intestinal mucosal apoptosis induced by intestinal ischemia/reperfusion in rats. Anesth Analg 2008; 107: 1884-91. https://doi.org/10.1213/ane.0b013e3181884bbf
  37. Wang B, Luo T, Chen D, Ansley DM: Propofol reduces apoptosis and up-regulates endothelial nitric oxide synthase protein expression in hydrogen peroxide-stimulated human umbilical vein endothelial cells. Anesth Analg 2007; 105: 1027-33, table of contents. https://doi.org/10.1213/01.ane.0000281046.77228.91
  38. Wang H, Xue Z, Wang Q, Feng X, Shen Z: Propofol protects hepatic L02 cells from hydrogen peroxide-induced apoptosis via activation of extracellular signal-regulated kinases pathway. Anesth Analg 2008; 107: 534-40. https://doi.org/10.1213/ane.0b013e3181770be9
  39. Chen RM, Wu CH, Chang HC, Wu GJ, Lin YL, Sheu JR, et al: Propofol suppresses macrophage functions and modulates mitochondrial membrane potential and cellular adenosine triphosphate synthesis. Anesthesiology 2003; 98: 1178-85. https://doi.org/10.1097/00000542-200305000-00021
  40. Gepts E, Camu F, Cockshott ID, Douglas EJ: Disposition of propofol administered as constant rate intravenous infusions in humans. Anesth Analg 1987; 66: 1256-63.
  41. Short TG, Aun CS, Tan P, Wong J, Tam YH, Oh TE: A prospective evaluation of pharmacokinetic model controlled infusion of propofol in paediatric patients. Br J Anaesth 1994; 72: 302-6. https://doi.org/10.1093/bja/72.3.302