References
- Ferguson C, Alpern E, Miclau T, Helms JA: Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev 1999; 87: 57-66. https://doi.org/10.1016/S0925-4773(99)00142-2
- Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA: Fracture healing as a post-natal developmental process: Molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 2003; 88: 873-84. https://doi.org/10.1002/jcb.10435
- Carano RA, Filvaroff EH: Angiogenesis and bone repair. Drug Discov Today 2003; 8: 980-9. https://doi.org/10.1016/S1359-6446(03)02866-6
- Steinbrech DS, Mehrara BJ, Saadeh PB, Chin G, Dudziak ME, Gerrets RP, et al: Hypoxia regulates VEGF expression and cellular proliferation by osteoblasts in vitro. Plast Reconstr Surg 1999; 104: 738-47. https://doi.org/10.1097/00006534-199909010-00019
- Steinbrech DS, Mehrara BJ, Saadeh PB, Greenwald JA, Spector JA, Gittes GK, et al: Hypoxia increases insulinlike growth factor gene expression in rat osteoblasts. Ann Plast Surg 2000; 44: 529-34; discussion 534-5. https://doi.org/10.1097/00000637-200044050-00012
- Tseng WP, Yang SN, Lai CH, Tang CH: Hypoxia induces BMP-2 expression via ILK, akt, mTOR, and HIF-1 pathways in osteoblasts. J Cell Physiol 2010; 223: 810-8.
- Semenza GL: Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 1999; 15: 551-78. https://doi.org/10.1146/annurev.cellbio.15.1.551
- Maxwell PH: Oxygen homeostasis and cancer: Insights from a rare disease. Clin Med 2002; 2: 356-62. https://doi.org/10.7861/clinmedicine.2-4-356
- D'Ippolito G, Diabira S, Howard GA, Roos BA, Schiller PC: Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone 2006; 39: 513-22. https://doi.org/10.1016/j.bone.2006.02.061
- Utting JC, Robins SP, Brandao-Burch A, Orriss IR, Behar J, Arnett TR: Hypoxia inhibits the growth, differentiation and bone-forming capacity of rat osteoblasts. Exp Cell Res 2006; 312: 1693-702. https://doi.org/10.1016/j.yexcr.2006.02.007
- Lee CM, Genetos DC, You Z, Yellowley CE: Hypoxia regulates PGE (2) release and EP1 receptor expression in osteoblastic cells. J Cell Physiol 2007; 212: 182-8. https://doi.org/10.1002/jcp.21017
- Park JH, Park BH, Kim HK, Park TS, Baek HS: Hypoxia decreases Runx2/Cbfa1 expression in human osteoblast-like cells. Mol Cell Endocrinol 2002; 192: 197-203. https://doi.org/10.1016/S0303-7207(02)00036-9
- Schipani E, Ryan HE, Didrickson S, Kobayashi T, Knight M, Johnson RS: Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. Genes Dev 2001; 15: 2865-76.
- He XY, Shi XY, Yuan HB, Xu HT, Li YK, Zou Z: Propofol attenuates hypoxia-induced apoptosis in alveolar epithelial type II cells through down-regulating hypoxia-inducible factor-1alpha. Injury 2012; 43: 279-83. https://doi.org/10.1016/j.injury.2011.05.037
- Hsing CH, Chou W, Wang JJ, Chen HW, Yeh CH: Propofol increases bone morphogenetic protein-7 and decreases oxidative stress in sepsis-induced acute kidney injury. Nephrol Dial Transplant 2011; 26: 1162-72. https://doi.org/10.1093/ndt/gfq572
- Noda M, Camilliere JJ: In vivo stimulation of bone formation by transforming growth factor-beta. Endocrinology 1989; 124: 2991-4. https://doi.org/10.1210/endo-124-6-2991
- Harris SE, Bonewald LF, Harris MA, Sabatini M, Dallas S, Feng JQ, et al: Effects of transforming growth factor beta on bone nodule formation and expression of bone morphogenetic protein 2, osteocalcin, osteopontin, alkaline phosphatase, and type I collagen mRNA in long-term cultures of fetal rat calvarial osteoblasts. J Bone Miner Res 1994; 9: 855-63.
- Wrana JL, Maeno M, Hawrylyshyn B, Yao KL, Domenicucci C, Sodek J: Differential effects of transforming growth factor-beta on the synthesis of extracellular matrix proteins by normal fetal rat calvarial bone cell populations. J Cell Biol 1988; 106: 915-24. https://doi.org/10.1083/jcb.106.3.915
- Jagodzinski M, Drescher M, Zeichen J, Hankemeier S, Krettek C, Bosch U, et al: Effects of cyclic longitudinal mechanical strain and dexamethasone on osteogenic differentiation of human bone marrow stromal cells. Eur Cell Mater 2004; 7: 35-41; discussion 41. https://doi.org/10.22203/eCM.v007a04
- Pavlin D, Zadro R, Gluhak-Heinrich J: Temporal pattern of stimulation of osteoblast-associated genes during mechanically-induced osteogenesis in vivo: Early responses of osteocalcin and type I collagen. Connect Tissue Res 2001; 42: 135-48. https://doi.org/10.3109/03008200109014255
- Ryoo HM, Hoffmann HM, Beumer T, Frenkel B, Towler DA, Stein GS, et al: Stage-specific expression of dlx-5 during osteoblast differentiation: Involvement in regulation of osteocalcin gene expression. Mol Endocrinol 1997; 11: 1681-94. https://doi.org/10.1210/mend.11.11.0011
- Chen D, Zhao M, Mundy GR: Bone morphogenetic proteins. Growth Factors 2004; 22: 233-41. https://doi.org/10.1080/08977190412331279890
- Li X, Cao X: BMP signaling and skeletogenesis. Ann N Y Acad Sci 2006; 1068: 26-40. https://doi.org/10.1196/annals.1346.006
- Ghosh-Choudhury N, Abboud SL, Nishimura R, Celeste A, Mahimainathan L, Choudhury GG: Requirement of BMP-2-induced phosphatidylinositol 3-kinase and akt serine/threonine kinase in osteoblast differentiation and smad-dependent BMP-2 gene transcription. J Biol Chem 2002; 277: 33361-8. https://doi.org/10.1074/jbc.M205053200
- Katz S, Ayala V, Santillan G, Boland R: Activation of the PI3K/Akt signaling pathway through P2Y receptors by extracellular ATP is involved in osteoblastic cell proliferation. Arch Biochem Biophys 2011; 513: 144-52. https://doi.org/10.1016/j.abb.2011.06.013
- Kawamura N, Kugimiya F, Oshima Y, Ohba S, Ikeda T, Saito T, et al: Akt1 in osteoblasts and osteoclasts controls bone remodeling. PLoS One 2007; 2: e1058. https://doi.org/10.1371/journal.pone.0001058
- Wang Y, Wan C, Deng L, Liu X, Cao X, Gilbert SR, et al: The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest 2007; 117: 1616-26. https://doi.org/10.1172/JCI31581
- Sharp FR, Bernaudin M: HIF1 and oxygen sensing in the brain. Nat Rev Neurosci 2004; 5: 437-48. https://doi.org/10.1038/nrn1408
- Hwang JM, Weng YJ, Lin JA, Bau DT, Ko FY, Tsai FJ, et al: Hypoxia-induced compensatory effect as related to shh and HIF-1alpha in ischemia embryo rat heart. Mol Cell Biochem 2008; 311: 179-87. https://doi.org/10.1007/s11010-008-9708-6
- Jiang BH, Jiang G, Zheng JZ, Lu Z, Hunter T, Vogt PK: Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ 2001; 12: 363-9.
- Fukuda R, Hirota K, Fan F, Jung YD, Ellis LM, Semenza GL: Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem 2002; 277: 38205-11. https://doi.org/10.1074/jbc.M203781200
- Xia Z, Huang Z, Ansley DM: Large-dose propofol during cardiopulmonary bypass decreases biochemical markers of myocardial injury in coronary surgery patients: A comparison with isoflurane. Anesth Analg 2006; 103: 527-32. https://doi.org/10.1213/01.ane.0000230612.29452.a6
- De Hert SG, Cromheecke S, ten Broecke PW, Mertens E, De Blier IG, Stockman BA, et al: Effects of propofol, desflurane, and sevoflurane on recovery of myocardial function after coronary surgery in elderly high-risk patients. Anesthesiology 2003; 99: 314-23. https://doi.org/10.1097/00000542-200308000-00013
- Bovill JG: Intravenous anesthesia for the patient with left ventricular dysfunction. Semin Cardiothorac Vasc Anesth 2006; 10: 43-8. https://doi.org/10.1177/108925320601000108
- Jin YC, Kim W, Ha YM, Shin IW, Sohn JT, Kim HJ, et al: Propofol limits rat myocardial ischemia and reperfusion injury with an associated reduction in apoptotic cell death in vivo. Vascul Pharmacol 2009; 50: 71-7. https://doi.org/10.1016/j.vph.2008.10.002
- Liu KX, Chen SQ, Huang WQ, Li YS, Irwin MG, Xia Z: Propofol pretreatment reduces ceramide production and attenuates intestinal mucosal apoptosis induced by intestinal ischemia/reperfusion in rats. Anesth Analg 2008; 107: 1884-91. https://doi.org/10.1213/ane.0b013e3181884bbf
- Wang B, Luo T, Chen D, Ansley DM: Propofol reduces apoptosis and up-regulates endothelial nitric oxide synthase protein expression in hydrogen peroxide-stimulated human umbilical vein endothelial cells. Anesth Analg 2007; 105: 1027-33, table of contents. https://doi.org/10.1213/01.ane.0000281046.77228.91
- Wang H, Xue Z, Wang Q, Feng X, Shen Z: Propofol protects hepatic L02 cells from hydrogen peroxide-induced apoptosis via activation of extracellular signal-regulated kinases pathway. Anesth Analg 2008; 107: 534-40. https://doi.org/10.1213/ane.0b013e3181770be9
- Chen RM, Wu CH, Chang HC, Wu GJ, Lin YL, Sheu JR, et al: Propofol suppresses macrophage functions and modulates mitochondrial membrane potential and cellular adenosine triphosphate synthesis. Anesthesiology 2003; 98: 1178-85. https://doi.org/10.1097/00000542-200305000-00021
- Gepts E, Camu F, Cockshott ID, Douglas EJ: Disposition of propofol administered as constant rate intravenous infusions in humans. Anesth Analg 1987; 66: 1256-63.
- Short TG, Aun CS, Tan P, Wong J, Tam YH, Oh TE: A prospective evaluation of pharmacokinetic model controlled infusion of propofol in paediatric patients. Br J Anaesth 1994; 72: 302-6. https://doi.org/10.1093/bja/72.3.302