References
- A. Alaca, S. Alaca, E. McAfee, and K. S. Williams, Lambert series and Liouville's identities, Dissertationes Math. 445 (2007), 1-72. https://doi.org/10.4064/dm445-0-1
-
A. Alaca, S. Alaca and K. S. Williams, The convolution sums
$\sum_{l+24m=n}{\sigma}(l){\sigma}(m)\;and\;\sum_{3l+8m=n}\;{\sigma}(l){\sigma}(m)$ , M. J. Okayama Univ. 49 (2007), 93-111. -
A. Alaca, S. Alaca and K. S. Williams, The convolution sum
$\sum_{m https://doi.org/10.4153/CMB-2008-001-1, Canad. Math. Bull. 51 (2008), 3-14. - B. C. Berndt, Ramanujan's Notebooks, Part II. Springer-Verlag, New York, 1989.
- N. Cheng and K. S. Williams, Evaluation of some convolution sums involving the sum of divisors functions, Yokohama Mathematical J., 52 (2005), 39-57.
- B. Cho, D. Kim and J.-K. Koo, Modular forms arising from divisor functions, J. Math. Anal. Appl. 356 (2009), 537-547. https://doi.org/10.1016/j.jmaa.2009.03.003
- B. Cho, D. Kim and J.-K. Koo, Divisor functions arising from q-series, Publ. Math. Debrecen 76 (2010), 495-508.
- B. Cho, D. Kim, and H. Park, Evaluation of a certain combinatorial convolution sum in higher level cases, J. Math. Anal. Appl. 406 (2013), 203-210. https://doi.org/10.1016/j.jmaa.2013.04.052
- L. E. Dickson, History of the Theory of Numbers, Vol.I, Chelsea Publ.Co., New York, 1952.
- J. W. L. Glaisher, On the square of the series in which the coefficients are the sums of the divisors of the exponents, Mess. Math. 14 (1884), 156-163.
- J. W. L. Glaisher, On certain sums of products of quantities depending upon the divisors of a number, Mess. Math. 15 (1885), 1-20.
- J. W. L. Glaisher, Expressions for the five powers of the series in which the coefficients are the sums of the divisors of the exponents, Mess. Math. 15 (1885), 33-36.
- H. Hahn, Convolution sums of some functions on divisors, Rocky Mountain J. Math. 37 (2007), 1593-1622. https://doi.org/10.1216/rmjm/1194275937
- J. G. Huard, Z. M. Ou, B. K. Spearman, and K. S. Williams, Elementary Evaluation of Certain Convolution Sums Involving Divisor Functions, Number theory for the millennium, II, (2002), 229-274.
- C. G. J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, Sumptibus Fratrum Borntrager ; reprinted in C. G. J. Jacobi, (1881-1891) Gesammelte Werke(Reimer, Berlin), Vol. 1, 49-239
- M. Kaneko and D. Zagier, A generalized Jacobi theta function and quasimodular form, The moduli space of curves (Texel Island, 1994). Progr. Math. 129 Birkhauser, 1995, 165-172.
-
D. Kim, A. Kim, H. Park, Congruences of the Weierstrass
$\delta(x)$ and${\delta}^{''}(x)(x=\frac{1}{2},\;\frac{\tau}{2},\;\frac{{\tau}+1}{2}$ - functions on divisors, Bull. Korean Math. Soc. 50(1) (2013), 241-261. https://doi.org/10.4134/BKMS.2013.50.1.241 - D. Kim, A. Kim, and N. Y. Ikikardes, Bernoulli numbers and certain convolution sums with divisor functions, Advances in Difference Equations 2013, 2013:277. https://doi.org/10.1186/1687-1847-2013-277
- D. Kim, M.-S. Kim, Divisor functions and Weierstrass functions arising from q-series, Bull. Korean Math. Soc., bf 49(4) (2012), 693-704. https://doi.org/10.4134/BKMS.2012.49.4.693
- J. Levitt, On a Problem of Ramanujan, M. Phil thesis, University of Nottingham, 1978.
- J. Liouville, Sur quelques formules generales qui peuvent etre utiles dans la theorie des nombres, J. Math. Pures App. 3 (1858), 241-250.
- J. Liouville, Sur quelques formules generales qui peuvent etre utiles dans la theeorie des nombres, J. Math. Pures App. 3 (1858), 273-288
- E. McAfee, A three term arithmetic formula fo Lioville type with application to sums of six squares, M-sc thesis, Carleton University, Ottawa, Canada 2004.
- E. McAfee and K. S. Williams, An arithmetic formula of Liouville type and an extension of an identity of Ramanujan, JP J. Algebra Number Theory Appl, 6 (2006), 33-56.
- E. Meissner, Uber die zahlentheoretischen Formuln Liouville's, Vierteljahrsschrift Naturforschende Gresellschaft in Zurich, 52 (1907), 156-216.
- G. Melfi, On some modular identities, de Gruyter, Berlin, 1998, 371-382.
- T. Pepin, Sur quelques formules d'analyse utiles dans la theorie des nombres, J. Math. Pures Appl. 4 (1888), 83-127.
- C. M. Piuma, Dimostrazione di alcune formole del Sig. Liouville, Giornale di Mat. 4 (1866), 1-14, 65-75, 193-201.
- S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916), 159-184.
- Whittaker, E. T. and G. N. Watson, A course of Modern Analysis, Cambridge Univ. Press 4th Ed., (1927), 464-498.
- K. S. Williams, Number Theory in the Spirit of Liouville, London Mathematical Society, Student Texts 76, Cambridge, 2011.