DOI QR코드

DOI QR Code

Effect of Cathode in Electrochemical Reaction for Treating Ballast Water

선박평형수 처리를 위한 전기화학 반응에서 음극의 영향

  • Received : 2013.11.21
  • Accepted : 2014.05.29
  • Published : 2014.06.30

Abstract

In this study, we examined the effect of cathode from electrolysis reactor for treating ballast water. We are going to select a suitable cathode for seawater electrolysis after considering the effect on the generation of the oxidant of cathode and the electrode deposition materials adhering to the surface of cathode. Anode is Ru-Ti-Pd electrode and cathode are Ti, Pt, JP520 (Ni-Pt-Ce) electrodes. Using the cathode of the three types, experiments were conducted to examine the effects of TRO (total residual oxidants) generation concentration and RNO (N, N-Dimethyl-4-nitrosoaniline, indicator of the generation of OH radical) degradation concentration (in 1, 35 psu), ohmic drop, FESEM(field emission scanning electron microscope) observation of cathode surface and EDX (energy dispersive X-ray spectroscopy) measurements of attached fouling material. The results showed that TRO generation concentration and RNO degradation concentration in according to each type of cathode are not different. The attached fouling materials were observed on the surface of Ti and the JP520 electrode by the observation of SEM after electrolysis for two hours, but it was not observed on the surface of Pt electrode. When considering the surface ohmic drop of cathode and the attached fouling materials, Pt electrode was judged as the excellent cathode.

Keywords

References

  1. Chen, G., 2004, Electrochemical technologies in wastewater treatment, Sep. Puri. Tech., 38, 11-41. https://doi.org/10.1016/j.seppur.2003.10.006
  2. Drogui, P., Elmaleh, S., Rumeau, M., Bemard, C., Rambaud, A., 2001, Oxidizing and disinfecting by hydrogen peroxide produced in a two-electrode cell, Wat., Res., 35(13), 3235-3241. https://doi.org/10.1016/S0043-1354(01)00021-5
  3. Han, K. H., 2009, Development present condition of ballast water processing unit processing, Oceanic Korea, 3, 88-94.
  4. Jin, H. S., Lee, J, H., 2010, Removal of Lead from seawater using electrolysis and coprecipitation method., Kor. Soc. Environ. Eng., 32(2), 149-154.
  5. Jung, Y. M., Yoon, Y. J., Kang, J. Won, 2012, Performance of disinfection oxidants in electrolysis for ballast water treatment, Kor. Soc. Wat. Qual. Kor. Soc. Wat. Wastewat., 2010 Joint Conf. Proceeding, 416-417.
  6. Kim, H. K., Jeong, J. Y., Shin, J. W., Park, J. Y., 2012, Removal of COD and T-N caused by ETA from nuclear power plant wastewater using 3D packed bed bipolar electrode system, J. Kor. Soc. Wat. Wasewat., 26(3), 409-421. https://doi.org/10.11001/jksww.2012.26.3.409
  7. Kim, D. S., Park, Y. S., 2009, A study on the preparation of the dimensionally stable anode(DSA) with high generation rate of oxidants( I ), J. Environ. Sci., 18(1), 49-60.
  8. Kim, J. S., 2006, Electrochemical oxidation of representative inorganic and organic contaminants in an in situ electrochemical reactor, Doctoral dissertation, University of Washington, Washington, USA.
  9. Kim, K. W., Lee, E. H., Kim, J. S., Shin, K. H., Jung, B. I., Kim, K. H., 2002, Performance improvement of Ir oxide electrode for organic destruction, HWAHAK KONGHAK, 40(2), 146-151.
  10. Liu, Y., Liu, H., Ma, J., Li, J., 2011, Investigation on electrochemical properties of cerium lead dioxide anode and application for elimination of nitrophenol, ELECTROCMICA Acta, 56, 1352-1360. https://doi.org/10.1016/j.electacta.2010.10.091
  11. MK newa,, Ballast water, 2013, http://news.mk.co.kr/newsRead.php?year= 2013&no=687174
  12. Naver encyclopedia of knowledge, 2013, http://terms.naver. com/entry.nhn?cid =571&docId=916551&mobile&categoryId=3298
  13. Panizza, M., Barbucci, A., Ricotti, R., Cerisola, 2007, Electrochemical degradation of methylene blue, Sep. Puri. Tech., 54, 2007, 382-387, 2007. https://doi.org/10.1016/j.seppur.2006.10.010
  14. Park, S. H., Kim, I. S., 2004, Disinfection of harmful organism for ballast water using electrolytic treatment system, Kor. Ins. Navi. Port Res., 2004 Annual Conf. Proceeding, 227-232.
  15. Park, Y. S., Kim, D. S., 2009, A study on the preparation of the dimensionally stable anode(DSA) with high generation rate of oxidants(II), J. Environ. Sci., 18(1), 61-72.
  16. Permelec Electrode LTD., 2013, http://www.permelec.co.jp/
  17. Seo, W. H., Jeon, S. A., Kim, J. H., Lee, T. H., Sang, B. I., 2006, Electrochemical disinfection for ballast water treatment, J. Kor. Soc. Environ. Eng., 28(11), 1162-1167.
  18. Song, H. Y., Lee, S., H., Han, J. M., 2006, SACP system design for moored merchant ships using temporary anodes, Cor. Prot., 5(2), 9-63.
  19. Yeom, H. T., Yoo, H. R., Park, Y., S., H, H, I, 2013a, Surface preparation practical affairs, Revision, DongMyoung, Seoul, 20-35.
  20. Yeom, H. T., Yoo, H. R., Park, Y., S., H, H, I, 2013b, Surface preparation practical affairs, Revision, DongMyoung, Seoul, 450-457.
  21. Yoo, Y. E., Kim, D. S., 2011, Comparison of dye removal performance and oxidants formation of insoluble electrode, J. Environ. Sci., 20(10), 1273-1284.
  22. Yoon, B. S., Rho, J. H., Kim, K. I., Park, S. K., Kim, H. R., 2005, Development of ballast water treatment technology(feasibility study of NaOCl produced by electrolysis, J. Kor. Soc. Mar. Envrion. Eng., 8(4), 174-178.

Cited by

  1. A Basic Study on Accelerated Life Test Method and Device of DSA (Dimensionally Stable Anode) Electrode vol.27, pp.6, 2018, https://doi.org/10.5322/JESI.2018.27.6.467