DOI QR코드

DOI QR Code

Response of Soil CO2 Fluxes to Seasonal Variations in a Grassplot

잔디밭에서 계절 변화에 따른 이산화탄소 플럭스 변동

  • Kim, Park Sa (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Kwon, Byung Hyuk (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Kang, Dong Hwan (Geo-Sciences Institute, Pukyong National University)
  • 김박사 (부경대학교 환경대기과학과) ;
  • 권병혁 (부경대학교 환경대기과학과) ;
  • 강동환 (부경대학교 지구과학연구소)
  • Received : 2013.12.23
  • Accepted : 2014.03.28
  • Published : 2014.06.30

Abstract

In this study, the variations of the carbon dioxide fluxes were investigated with soil temperatures in the grassplot and seasonal variations of carbon dioxide concentrations and fluxes were analysed. Soil temperatures, carbon dioxide concentrations and fluxes were measured on the grassplot in Pukyong National University. Field measurements were carried out 25 times from March in 2010 to March in 2011 with nine points on the grassplot. Seasonal variations of carbon dioxide concentrations and fluxes showed an inverse relation. In summer, carbon dioxide concentrations are lower and carbon dioxide fluxes are higher. In winter, carbon dioxide concentrations are higher and carbon dioxide fluxes are lower. On the grassplot, carbon dioxide emission rate increase when the soil temperature is more than $20^{\circ}C$ and the emission rate decrease when the soil temperatures are less than $10^{\circ}C$. When the accumulated rainfall for five days before measurement day is 20~100 mm, it is showed that the more rainfall, the more carbon dioxide emissions. Carbon dioxide emission rate from the grassplot to the upper atmosphere was increased or decreased by the factors such as soil temperature, growth and wither of grass and rainfall. The results of this study showed that the emission of carbon dioxide in the grassplot is dominantly controlled by seasonal factors (especially soil temperature and rainfall).

Keywords

References

  1. Baldocchi, D. D., Vogel, C. A., Hall, B., 1997, Seasonal variation of carbon dioxide exchange rates above and below a boreal jack pine forest, Agr. and Forest Meteorol., 83, 147-170. https://doi.org/10.1016/S0168-1923(96)02335-0
  2. Boone, R. D., Nadelhoffer, K. J., Canary, J. D., Kaye, J. P., 1998, Root exert a strong influence on the temperature sensitivity of soil respiration, Nature, 396, 570-572. https://doi.org/10.1038/25119
  3. Bowden, R. D., Nadelhoffer, K. J., Boone, R. D., Melillo, J. M., Garrison, J. B., 1993, Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest, Canadian J. of Forest Res., 23, 1402-1407. https://doi.org/10.1139/x93-177
  4. Bowden, R. D., Newkirk, K. M., Rullo, G. M., 1998, Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions, Soil Biol. and Biochem., 30, 1591-1597. https://doi.org/10.1016/S0038-0717(97)00228-9
  5. Campbell, C. S., Heilman, J. L., McInnes, K. J., Wilson, L. T., Medley, J. C., Wu, G., Cobos, D. R., 2001, Diel and seasonal variation in $CO_{2}$ flux of irrigated rice, Agr. and Forest Meteorol., 108, 15-27. https://doi.org/10.1016/S0168-1923(01)00225-8
  6. Chae, N. Y., Kim, J., Kim, D. G., Lee, D. W., Kim, R. H., Ban, J. Y., Son, Y. W., 2003, Measurement of soil $CO_{2}$ efflux using a closed dynamic chamber system, Korea, Korean J. of Agr. and Forest Meteorol., 5(2), 94-100.
  7. Cho, H. K., 1972, A statistical study on evapotranspiration of paddy-field, J. of Korean Meteorol. Soc., 5, 1-8.
  8. Choi, T. J., Kim, J., Lim, J. H., 2003, $CO_{2}$ exchange in Kwangneung broadleaf deciduous forest in a hilly terrain in the summer of 2002, Korea, Korean J. of Agr. and Forest Meteorol., 5(2), 70-79.
  9. Davidson, B. A., Belk, E., Boone, R. D., 1998, Soil water content and temperature as independent or confound factors controlling soil respiration in a temperature mixed hardwood forest, Global Change Biol., 4, 217-227. https://doi.org/10.1046/j.1365-2486.1998.00128.x
  10. Ellert, B. H., Bettany, J. R., 1992, Temperature dependence of net nitrogen and sulfur mineralization, Soil Science Society of America J., 56, 1133-1141. https://doi.org/10.2136/sssaj1992.03615995005600040021x
  11. Feng, Y., Li, X., 1997, Calculating temperature response of soil process, Soil Biol. and Biochem., 29, 1601-1603. https://doi.org/10.1016/S0038-0717(97)00023-0
  12. Field, C. B., Ball, J. T., Berry, J. A., 1989, Photosynthesis, principles and filed techniques. In Plant physiological ecology, field methods and instrumentation (Pearcy, R. W., Ehleringer, J., Mooney, H. A., Rundel, P. W.,), Chapmand and Hall, New York, 209-253.
  13. Grahammer, K., Jawson, M. D., Skopp, J., 1991, Day and night soil respiration from a grassland, Soil Biol. and Biochem., 23, 77-81. https://doi.org/10.1016/0038-0717(91)90165-G
  14. Guo, H., Noormets, A., Zhao, B., Chen, J., Sun, G., Gu, Y., Li, B., Chen, J., 2009, Tidal effects on net ecosystem exchange of carbon in an estuarine wetland, Agr. and Forest Meteorol., 149, 1820-1828. https://doi.org/10.1016/j.agrformet.2009.06.010
  15. Heilman, J. L., Cobos, D. R., Heinsch, F. A., Campbell, C. S., McInnes, K. J., 1999, Tower based conditional sampling for measuring ecosystem-scale carbon dioxide exchange in coastal wetlands, Estuaries, 22, 584-591. https://doi.org/10.2307/1353046
  16. Holt, J. A., Hodgen, M. J., Lamb, D., 1990, Soil respiration in the seasonally dry tropics near Townsville, North Queensland, Australian J. of Soil Res., 28, 737-745. https://doi.org/10.1071/SR9900737
  17. Holthausen, R. S., Caldwell, M. M., 1980, Seasonal dynamics of root system respiration in Atriplex confertifolia, Plant and Soil, 55, 307-317. https://doi.org/10.1007/BF02181810
  18. Ilstedt, U., Nordgren, A., Malmer, A., 2000, Optimum soil water for soil respiration before and after amendment with glucose in humid tropical acrisols and a boreal mor layer, Soil Biol. Biochem., 32, 1591 -1599. https://doi.org/10.1016/S0038-0717(00)00073-0
  19. Jenkinson, D. S., 1990, The turnover of organic carbon and nitrogen in soil, Philosophical Transactions of the Royal Society of London Series B, 329, 361-368. https://doi.org/10.1098/rstb.1990.0177
  20. Kang, D. H., Kwon, B. H., Kim, P. G., 2010, $CO_{2}$ respiration characteristics with physicochemical properties of soils at the coastal ecosystem in Suncheon Bay, J. of the Environmental Sciences, 19(2), 217-227. https://doi.org/10.5322/JES.2010.19.2.217
  21. Kang, D. H., Kwon, B. H., Yu, H. S., Kim, P. S., Kim, G. H., 2011, Seasonal and spatial variations of $CO_{2}$ fluxes between surface and atmosphere in foreshore, paddy field and woods sites, J. of the Environmental Sciences, 20(8), 963-975. https://doi.org/10.5322/JES.2011.20.8.963
  22. Kim, D. S., 2007, Greenhouse gas($CH_{4}$, $CO_{2}$, $N_{2}O$) emission from estuarine tidal and wetland and their characteristics, J. of Korean Soc. for Atmospheric Environment, 23(2), 225-241. https://doi.org/10.5572/KOSAE.2007.23.2.225
  23. Kim, J. G., 2010, The Climate Near the Ground : 7nd edition, Sigma Press, Seoul, 779.
  24. Kucera, C. L., Kirkham, D. R., 1971, Soil respiration studies in tallgrass prairie in Missouri, Ecology, 52, 315-323.
  25. Lee, H. C., Hong, J. K., Cho, C. H., Choi, B. C., Oh, S. N., Kim, J., 2003, Surface exchange of energy and carbon dioxide between the atmosphere and a farmland in Haenam, Korea, Korean J. of Agr. and Forest Meteorol., 5(2), 61-69.
  26. Liu, X., Wan, S., Su, B., Hui, d., Luo, Y., 2002, Response of soil $CO_{2}$ efflux to water manipulation in a tallgrass prairie ecosystem, Plant and Soil, 240, 213-223. https://doi.org/10.1023/A:1015744126533
  27. Lloyd, J., Taylor, J. A., 1994, On the temperature dependence of soil respiration, Functional Ecology, 8, 315-323. https://doi.org/10.2307/2389824
  28. Luo, Y., Jackson, R. B., Field, C. B., Mooney, H. A., 1996, Elevated $CO_{2}$ increases belowground respiration in California grasslands, Oecologia, 108, 130-137. https://doi.org/10.1007/BF00333224
  29. Luo, Y, Zhou, X., 2006, Soil respiration and the environment, ELSEVIER, 305pp.
  30. MacDonald, N. W., Zak, D. R., Pregitzer, K. S., 1995, Temperature effects on kinetics of microbial respiration and net nitrogen and sulfur mineralization, Soil Science Soc. of America J., 59, 233-240. https://doi.org/10.2136/sssaj1995.03615995005900010036x
  31. Mielnick, P. C., Dugas, W. A., 2000, Soil $CO_{2}$ flux in a tallgrass prairie, Soil Biol. Biochem., 32, 221-228. https://doi.org/10.1016/S0038-0717(99)00150-9
  32. Moon, B. K., Hong, J. K., Lee, B. R., Yun, J. I., Park, E. W., Kim, J., 2003, $CO_{2}$ and energy exchange in a rice paddy for the growing season of 2002 in Hari, Korea, Korean J. of Agr. and Forest Meteorol., 5(2), 51-60.
  33. Othaki, E., 1984, Application of an infrared carbon dioxide and humidity instrument to studies of turbulent transport, Boundary Layer Meteorol., 29, 85-107. https://doi.org/10.1007/BF00119121
  34. Othaki, E., Matsui, T., 1982, Infrared device for simultaneous measurement of atmospheric carbon dioxide and water vapor, Boundary Layer Meteorol., 24, 109-119. https://doi.org/10.1007/BF00121803
  35. Palta, J. A., Nobel, P. S., 1989, Root respiration for Agave deserti: Influence of temperature, water status and root age on daily patterns, J. of Experimental Botany, 40, 181-186. https://doi.org/10.1093/jxb/40.2.181
  36. Papendick, R. I., Campbell, G. S., 1981, Theory and measurement of water potential, In Water potential relations in soil microbiology(Parr, J. F., Gardner, W. R., and Elliott, L. F., eds.), 1-22, Soil Science Soc. of America, Special Publication No. 9, Madison, WI.
  37. Raich, J. W., Schlesinger, W. H., 1992, The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate, Tellus, 44B, 81-99.
  38. Rochette, P., Desjardins, R. L., Pattey, E., 1991, Spatial and temporal variability of soil respiration in agricultural fields, Canadian J. of Soil Science, 71, 189-196. https://doi.org/10.4141/cjss91-018
  39. Saito, M., Miyata, A., Nagai, H., Yamada, T., 2005, Seasonal variation of carbon dioxide exchange in rice paddy field in Japan, Agr. and Forest Meteorol., 135, 93-109. https://doi.org/10.1016/j.agrformet.2005.10.007
  40. Schimel, J. P., Clein, J. S., 1991, Microbial response to freeze-thaw cycles in tundra and taiga soils, Soil Biol. Biochem., 28, 1061-1066.
  41. Schlentner, R. E., Van Cleve, K., 1985, Relationships between $CO_{2}$ evolution from soil, substrate temperature, and substrate moisture in four mature forest types in interior Alaska, Canadian J. of Forest Res., 15, 97-107. https://doi.org/10.1139/x85-018
  42. Teklemariam, T., Staebler, R. M., Barr, A. G., 2009, Eight years of carbon dioxide exchange above a mixed forest at Borden, Ontario, Agr. and Forest Meteorol., 149, 2040-2053. https://doi.org/10.1016/j.agrformet.2009.07.011
  43. Thierron, V., Laudelout, H., 1996, Contribution of root respiration to total $CO_{2}$ efflux from the soil of a deciduous forest, Canadian J. of Forest Res., 26, 1142-1148. https://doi.org/10.1139/x26-127
  44. Uchijima, Z., 1976, Maize and rice(Monteith, J. L., eds.), Vegetation and the Atmosphere, 2, 33-64.
  45. Wang, W., Feng, J., Oikawa, T., 2009, Contribution of root and microbial respiration to soil $CO_{2}$ efflux and their environmental controls in a humid temperate grassland of Japan, Pedosphere, 19(1), 31-39. https://doi.org/10.1016/S1002-0160(08)60081-8
  46. Xu, L., Baldocchi, D. D., Tan, J., 2004, How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature, Global Biogeochem. Cycles, 18, GB4002, Doi: 10.1029/2004GB002281.