초록
$Nd_{12.5}Fe_{80.6}B_{6.4}Ga_{0.3}Nb_{0.2}$ HDDR-treated powder was compacted by hot-pressing using different configurations of dies and heating rates. The die configurations were especially different in terms of the evacuation system that was used in heating for hot-pressing. The coercivity in the compacts was influenced by the evacuation system of the die and heating rate. In spite of the identical hot-pressing temperature and heating rate, coercivity was radically reduced above $600^{\circ}C$ in the compacts prepared in the closed-type die compared to that in the compacts prepared in the open-type die. The coercivity in the compacts prepared in the closed-type die decreased with increasing heating rate and the value further increased when extreme high heating rate was employed. $Nd_{12.5}Fe_{80.6}B_{6.4}Ga_{0.3}Nb_{0.2}$ HDDR-treated powder contained a significant amount of residual hydrogen (approx. 1500 ppm) in the form of $Nd_2Fe_{14}BH_x$ hydride. The dramatic coercivity decrease in the compact prepared in the closed die is attributed to the disproportionation of $Nd_2Fe_{14}BH_x$ hydride. High coercivity is mainly due to the effective desorption of hydrogen or the suppression of hydrogen-related disproportionation upon hot-pressing.