DOI QR코드

DOI QR Code

Review on Asphaltene Architecture

아스팔텐에 대한 연구동향

  • Oh, Kyeong-Seok (Department of Chemical and Environmental Technology, Inha Technical College)
  • 오경석 (인하공업전문대학 화공환경과)
  • Received : 2014.03.20
  • Accepted : 2014.04.02
  • Published : 2014.03.30

Abstract

Asphaltenes are generally defined by their solubility when a light alkane, such as n-heptane or n-pentane, is mixed with crude oils or oil sand bitumen. However, this definition is nowadays not enough to understand their behaviors during oil recovery, transport, storage, and even refinery operation. Interestingly, the researches regarding asphaltenes have been vastly presented within last decade. This is because the production of heavy oils is becoming larger and asphaltenes are known to play an important role in the property changes of heavy oils. In this paper, the researches regarding molecular weight, aggregation behavior of asphaltenes are introduced and discussed. It is expected that analytical studies will be appeared continuously in the form of global collaboration in order to describe asphaltene molecules as close as possible based on their origin.

Keywords

References

  1. C.H. Arnaud, Digging into Asphaltenes, Chem. Eng. News, 87, 12 (2009).
  2. http://www.slb .com/-/media/Files/ resources/oilfield_review/ors07/sum07/p22_43.pdf (accessed on March 18, 2014)
  3. H. Groenzin, O.C. Mullins, Asphaltene Molecular Size and Structure, J. Phys. Chem. A. 21, 3161 (1999).
  4. J. D. McLean, P.K. Kilpatrick, Effects of Asphaltene Solvency on Stability of Water-in-Crude-Oil Emulsions, J. Colloid Interface Sci. 189, 242 (1997). https://doi.org/10.1006/jcis.1997.4807
  5. http://www.prweb.com/releases/asphaltene_inhibitors/paraffin_inhibitors/prweb11648700.htm (accessed on March 18, 2014)
  6. M.M. Boduszynski, In Chemistry of Asphaltens; J.W. Bunger, N.C.Li, Eds.; American Chemical Society: Washington, DC, 1981; Chapter 7.
  7. http://www.glossary.oilf ield. slb.com(accessed on March 18, 2014)
  8. K. Oh, M.D. Deo, "Near Infrared Spectroscopy to Study Asphaltene Aggregation in Solvents" in Asphaltenes, Heavy Oils and Petroleomics(Mullins, O.C.; Sheu, E.Y.; Hammami, A.; Marshall, A.G. Ed., Ch.18), 2006, 465-484.
  9. K. Oh, T.A. Ring, M.D. Deo, Asphaltene Aggregation in Organic Solvents, J. Colloid Interface Sci.,271, 212 (2004). https://doi.org/10.1016/j.jcis.2003.09.054
  10. K. Oh, S.C. Oblad, F.V. Hanson, M.D. Deo, Examination of Asphaltenes Precipitation and Self-Aggregation, Energy Fuels, 17, 508(2003). https://doi.org/10.1021/ef020138y
  11. K. Oh,M.D.Deo, Effect of Organic Additives on the Onset of Asphaltene Precipitation, Energy Fuels, 16, 694 (2002). https://doi.org/10.1021/ef010223q
  12. E.Y. Sheu, D.A. Storm, M.M. DeTar, Asphaltenes in Polar Solvents, J. Non-Crys. Solids, 131-133, 347 (1991).
  13. R.S. Mohamed, A.C.S. Ramos, W. Loh, Aggregation Behavior of Two Asphaltenic Fractions inAromatic Solvents, Energy Fuels, 13, 323 (1999). https://doi.org/10.1021/ef9802072
  14. S.I. Andersen, S.D Christensen, The Critical Micelle Concentration of Asphaltenes as Measured by Calorimetry, Energy Fuels, 14, 38 (2000). https://doi.org/10.1021/ef990122g
  15. E. Rogel, O. Léon, G. Torres, J. Espidel, Aggregation of asphaltenes in organic solvents using surface tension measurement s, Fuel, 79, 1389 (2000). https://doi.org/10.1016/S0016-2361(99)00273-2
  16. O.C. Mullins, The Modified Yen Model, Energy Fuels, 24, 2179 (2010). https://doi.org/10.1021/ef900975e
  17. O.C. Mullins, H. Sabbah, J. Eyssautier, A. E. Pomerantz, L. Barre, A.B.Andrews, Y. Ruiz-Morales, F. Mostowfi, R. McFarlane, L. Goual, R. Lepkowicz, T. Cooper, J. Orbulescu, R.M. Leblanc, J. Edwards, R. N. Zare, Advances in Asphaltene Science and the Yen-Mullins Model, Energy Fuels, 26, 3986 (2012). https://doi.org/10.1021/ef300185p
  18. H. Sabbah, A.L. Morrow, A. E. Pomerantz, O.C. Mullins, X. Tan, M.R. Gray, K. Azyat, R.R. Tykwinski, R.N. Zare, Comparing Laser Desorption/Laser Ionization Mass Spectra of Asphaltenes and Model Compounds, Energy Fuels, 24, 3589 (2010). https://doi.org/10.1021/ef100402g
  19. R.P. Roger, A.G. Marshall, Petroleomics: Advances Characterization of Petroleum Derived Materials by Fourier Transform Ion Cyclotron Resonance Mass Spectroscopy (FT-ICR MS). Chapter 3 in Asphaltenes, Heavy Oils and Petroleomics; Springer, New York, 2007.
  20. A.A. Herod, K.D. Bartle, R. Kandiyoti, Characterization of Heavy Hydrocarbons by Chromatographic and Mass Spectroscopic Methods: An Overview, Energy Fuels, 21, 2176 (2007). https://doi.org/10.1021/ef060642t
  21. O.C. Mullins, B. Martínez-Haya, A.G. Marshall, Contrasting Perspective on Asphaltene Molecular Weight. This comment vs the Overview of A.A. Herod, K.D. Bartle, and R. Kandiyoti, Energy Fuels, 22, 1765 (2008). https://doi.org/10.1021/ef700714z
  22. D. Borton II, D.S. Pinkston, M.R. Hurt, X. Tan, K. Azyat, A. Schere, R. Tykwinski, M. Gray, K. Qian, H.I. Kenttämaa, Molecular Structure of Asphaltenes Based on the Dissociation Reactions of Their Ions in Mass Spectroscopy, Energy Fuels, 24, 5548 (2010). https://doi.org/10.1021/ef1007819
  23. H. Sabbah, A.L. Morrow, A.E. Pomerantz, R.N. Zare, Evidence for Island Structures at the Dominant Architecture of Asphaltens, Energy Fuels, 25, 1597 (2011). https://doi.org/10.1021/ef101522w
  24. F. Alvarez-Ramírez, R. Ruiz-Morales, Island versus Archipelago Architecture for Asphaltenes: Polycyclic Aromatic Hydrocarbon Dimer Theoretical Studies, Energy Fuels, 27, 1791 (2013). https://doi.org/10.1021/ef301522m
  25. M.P. Hoepfner, H.S. Fogler, Multiscale Scattering Investigations of Asphaltene Cluster Breakup, Nanoaggregate Dissociation, and Molecular Ordering, Langmuir, 29, 15423 (2013). https://doi.org/10.1021/la403531w
  26. I. Merdrignac, B. Desmazieres, P. Terrier, A. Delobel, O. Laprevote, Proceedings, Heavy Organics Deposition, "Analysis of raw and hydrotreatedasphaltenes using off-line and on-line SEC/MScoupling," Los Cabos, Baja California, Mexico, 2004.
  27. K. Qian, K.E. Edwards, M. Siskin, W.N. Olmstead, A.S. Mennito, G.J. Dechert, N.E. Hoosain, Deposition and Ionization of Heavy Petroleum Molecules and Measurement of Molecular weight Distributions. Energy Fuels, 21, 1042 (2007). https://doi.org/10.1021/ef060360t
  28. B. Martínez-Haya, A.R. Hortal, P.M. Hurtado, M.D. Lobato, J.M. Pedrosa, Laser desorption/ionization dtermination of molecular weight distributions of polyaromatic carbonaceous compounds and their aggregates, J. Mass. Spectrom., 42, 701 (2007). https://doi.org/10.1002/jms.1226
  29. D.E. Freed, N.V. Lisitza, P.N. Sen, Y.-Q. Song, Asphaltene Molecular composition and Dynamics from NMR diffusion measurements. Chapter 11 in Asphaltenes, Heavy Oils and Petroleomics; Springer, New York, 2007.
  30. A.B. Andrew, R. Guerra, P.N. Sen, O.C. Mullins, Diffusivity of asphaltene molecules by Fluorescence correlation spectroscopy, J. Phys. Chem. A., 110, 8095 (2006).
  31. V.J. Wargadalam, K. Norinaga, M. Iino, Size and shape of a coal asphaltenestudied by viscosity and diffusion coefficient measurements. Fuel, 81, 1403 (2002). https://doi.org/10.1016/S0016-2361(02)00055-8