DOI QR코드

DOI QR Code

Advanced Treatment of Liquid Fertilizer from Livestock Night Soil Treatment Facility by Membrane Separation Processes

분리막 공정을 이용한 축산분뇨 처리장 액비의 고도처리

  • Kim, Joo-Hye (Dept. of Chemical and Biological Engineering, Jeju National University) ;
  • Kim, Seung-Geon (Dept. of Chemical and Biological Engineering, Jeju National University) ;
  • Lee, Ho-Won (Dept. of Chemical and Biological Engineering, Jeju National University)
  • 김주혜 (제주대학교 생명화학공학과) ;
  • 김승건 (제주대학교 생명화학공학과) ;
  • 이호원 (제주대학교 생명화학공학과)
  • Received : 2014.03.31
  • Accepted : 2014.04.22
  • Published : 2014.04.30

Abstract

This paper is to develop the process suitable for the advanced treatment of liquid fertilizer from the livestock night soil treatment facility (biogas plant). Nanofiltration (NF) and reverse osmosis (RO) process was used, respectively, for the advanced treatment of liquid fertilizer. And membrane bioreactor (MBR) with and without biomedia were tested, respectively, for the pretreatment. It was found that almost T-N of the liquid fertilizer was composed of ammoniacal nitrogen. Transmembrane pressure of MBR with biomedia increased slowly during the operation time, while that of MBR without biomedia increased rapidly at the initial time. But there was no difference observed in the removal efficiencies of COD, T-N, and T-P irrespective of the dosage of biomedia. When the liquid fertilizer was pretreated by MBR with biomedia, the removal efficiencies of COD, T-N, and T-P were 99.8, 86.5%, and 99.8% by NF, and 99.9, 86.8%, and 99.8% by RO, respectively. Compared with the effluent quality standards of the livestock night soil treatment facility, the water quality treated by MBR and NF/RO process met the standard for COD and T-P, but exceeded the permitted standard for T-N. In order to meet the effluent quality standard for T-N, it is necessary to change the MBR operation cycle or to add the secondary treatment by NF/RO.

본 연구는 축산분뇨 처리장(바이오가스 플랜트) 액비의 고도처리에 적합한 공정을 도출하기 위한 기초 연구이다. 액비를 고도처리하기 위하여 나노여과 및 역삼투(reverse osmosis) 공정을 각각 사용하였고, 전처리공정으로서 담체를 첨가하지 않은 MBR과 담체를 첨가한 MBR을 각각 적용하여 비교하였다. 액비의 질소는 주로 암모니아성 질소의 형태로 존재하였다. MBR의 운전에서 담체(biomedia) 유무에 따른 COD, T-N 및 T-P의 제거효율에서 큰 차이는 없었으나, 담체를 첨가한 MBR의 TMP는 담체를 첨가하지 않은 MBR에 비해 매우 서서히 증가하였다. 전처리 공정으로 담체를 첨가한 MBR 공정을 사용한 경우, NF에 의한 COD, T-N 및 T-P의 제거효율은 각각 99.8, 86.5% 및 99.8%이었으며, RO에 의한 제거효율은 각각 99.9, 86.8% 및 99.9%이었다. MBR과 NF/RO 공정을 이용하여 처리한 액비의 최종 수질은 분뇨처리장 방류수 수질기준과 비교하였을 때, COD와 T-P는 방류수 수질기준을 만족하였으나, T-N은 수질기준에 부적합하였다. 따라서 T-N에 대한 방류수 기준을 만족시키기 위해서는 MBR 조업 cycle의 조정 또는 나노여과/역삼투에 의한 2차 재처리 등의 개선이 필요한 것으로 판단된다.

Keywords

References

  1. B. K. Park, J. S. Lee, N. J. Cho, and K. Y. Jung, "Effect of Application Time and Amount of Liquid Pig Manure on Growth of Rice and Infiltration Water Quality", Korean J. Soil Sci. Fert, 34(3), 147 (2001).
  2. D. H. Kim, "A Study on the Biological Process and the Membrane Process for Treatment of Piggery Wastewater", M.S. Dissertation, Myongji University, Gyeonggi-Do (2007).
  3. http://epa.gov/climatechange, March 25 (2014).
  4. H. S. Shin, C. D. Jin, and K. H. Youm, "Recycling of Acidic Etching Waste Solution Containing Heavy Metals by Nanofiltration (I): Evaluation of Acid Stability of Commercial Nanofiltration Membranes", Membrane Journal, 19(4), 317 (2009).
  5. C. S. Kong, J. Y. Heo, Y. M. Yoon, J. H. Han, and N. G. Her, "Treatment of AP Solutions Extracted from Solid Propellant by NF/RO Membrane Process", Membrane Journal, 22(4), 235 (2012).
  6. H. D. Lee, Y. H. Cho, and H. B. Park, "Current Research Treads in Water Treatment Membranes based on Nano Materials and Nano Technologies", Membrane Journal, 23(2), 101 (2013).
  7. H. H. Cho and J. T. Kim, "Trends in the Technology and Market of Membrane Bioreactor (MBR) for Wastewater Treatment and Reuse", Membrane Journal, 23(1), 24 (2013).
  8. H. W. Lee, S. G. Kim and S. J. Khang, "The Effect of Operation Modes on Filtration Performance and Removal Efficiency in a Flat-Sheet Membrane- Coupled Sequencing Batch Reactor", Journal. of KSEE, 29(10), 1138 (2007).
  9. S. G. Kim, H. W. Lee, and Y. J. Kang, "The Effect of Filling Step on the Removal Efficiency and Filtration Performance in the Operation of Submerged Membrane-Coupled Sequencing Batch Reactor", Membrane Journal, 21(3), 263 (2011).
  10. Y. K. Choi, O. S. Kwon, H. S. Park and S. H. Noh, "Mechanism of Gel Layer Removal for Intermittent Aeration in the MBR Process", Membrane Journal, 16(3), 188 (2006).
  11. B. C. Ma, "Effect of Physicochemical Characteristics of Microbial Flocs on Membrane Performance in Membrane-Coupled Sequencing Batch Reactor with and without Anoxic Phase", M.S. Dissertation, Seoul National Univ., Seoul (2004).
  12. A. L. Lim and R. Bai, "Membrane Fouling and Cleaning in Microfiltration of Activated Sludge Wastewater", J. Membrane Sci., 216, 279 (2003). https://doi.org/10.1016/S0376-7388(03)00083-8
  13. APHA, "Standard Methods for the Examination of Water and Wastewater", 21th ed., Washington DC. (2005).
  14. S. G. Kim and H. W. Lee, "The Effect of Media on the Removal Efficiency and Filtration Performance in the Submerged Membrane-Coupled Sequencing Batch Reactor with Media", Membrane Journal, 22(6), 450 (2012).
  15. S. G. Kim and H. W. Lee, "Membrane-Coupled Sequencing Batch Reactor System for the Advanced Treatment of Rural Village Sewage", Membrane Journal, 24(1), 20 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.1.20
  16. N. F. Gray, "Water Technology" 3rd ed., pp. 465-468, Elsevier, New York, NY (2010).